数学技能 I: 推理与交流 Mathematical Skills I: Reasoning & Communication MAT00011C

这是一份YORK约克大学MAT00011C作业代写的成功案例

数学技能 I: 推理与交流 Mathematical Skills I: Reasoning & Communication MAT00011C
问题 1.

the problem was $\frac{10^{2}}{10^{5}}$. Both bases have positive indices so to divide, we subtract the indices. Therefore
$$
\frac{10^{2}}{10^{5}}=10^{2-5}
$$

证明 .

We cannot normally subtract 5 from 2 , but, just as we have negative indices, we can subtract and have a negative or minus result as an answer, We say that $2-5=-3$. Check it the long way:
$$
\frac{10^{2}}{10^{5}}=\frac{100}{100000}=\frac{1}{1000} \text { or } 10^{-3}
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MAT00011C COURSE NOTES :

We have now worked out that:
$$
10^{2} \div 10^{4}=10^{-2}
$$
If you are told that:
$$
10^{-4} \div 10^{2}=10^{-6}
$$
and that:
$$
10^{-3} \div 10^{2}=10^{-5}
$$
can you see that the subtractions of the indices of the dividing bases are as follows:
$$
\begin{aligned}
&10^{2} \div 10^{4}=10^{2-4}=10^{-2} \
&10^{-4} \div 10^{2}=10^{-4-2}=10^{-6} \
&10^{-3} \div 10^{2}=10^{-3-2}=10^{-5}
\end{aligned}
$$








发表评论

您的电子邮箱地址不会被公开。