机械学、机器和振动Mechanics, Machines and Vibration FEEG2002W1-01

这是一份southampton南安普敦大学FEEG2002W1-011作业代写的成功案例

机械学、机器和振动Mechanics, Machines and Vibration FEEG2002W1-01

Another characteristic of a random variable is the power spectral density $S(\lambda)$, defined as the Fourier transform of the autocorrelation function
$$
S(\lambda)=\int_{-\infty}^{\infty} \Psi(\tau) e^{i \lambda \tau} d \tau
$$
The integral of function $S(\lambda)$ is the variance of function $y(t)$, i.e., if the average value is equal to zero, the square of its r.m.s. value
$$
y_{r m s}=\sqrt{\int_{-\infty}^{\infty} S(\lambda) d \lambda} .
$$

英国论文代写Viking Essay为您提供作业代写代考服务

FFEEG2002W1-01 COURSE NOTES :

The resultant of the axial force $F_{z}$ exerted by the other parts of the bar is
$$
F_{z}+\frac{1}{2} \frac{\partial F_{z}}{\partial z} d z-F_{z}+\frac{1}{2} \frac{\partial F_{z}}{\partial z} d z .
$$
The dynamic equilibrium equation can then be written in the form
$$
\rho A \ddot{u}{z}=\frac{\partial F{z}}{\partial z}+f_{z}(z, t) .
$$
The axial force $F_{z}$ is easily linked with the displacement by the usual formula from the theory of elasticity
$$
F_{z}=A \sigma_{z}=E A \epsilon_{z}=E A \partial u_{z} / \partial z .
$$










发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注