热物理和物质属性|Thermal Physics & Properties of Matter代写    5CCP4000代考

这是一份KCL伦敦大学学院5CCP4000作业代写的成功案

纳米系统的理论处理|Theoretical Treatments Of Nano-systems代写   7CCP4473代考
问题 1.

The correct argumentation realises, that the particles are indistinguishable!
Before removing the separator:
$$
Z_{\mathrm{a}}=\frac{Z_{1}^{N}}{N !} \cdot \frac{Z_{1}^{N}}{N !}
$$
After removing the separator:
$$
Z_{\mathrm{b}}=\frac{\left(2 Z_{1}\right)^{2 N}}{(2 N) !}
$$


证明 .

Before removing the separator: $F_{\mathrm{a}}=-k_{\mathrm{B}} T \ln \left(\frac{Z_{1}^{N}}{N !} \cdot \frac{Z_{1}^{N}}{N !}\right)=-k_{\mathrm{B}} T 2\left[N \ln Z_{1}-N \ln N+N\right]$ After removing the separator: $F_{\mathrm{b}}=-k_{\mathrm{B}} T \ln \left(\frac{\left(2 Z_{1}\right)^{2 N}}{(2 N) !}\right)=-k_{\mathrm{B}} T\left[2 N \ln 2 Z_{1}-2 N \ln (2 N)+2 N\right]$ and $\Delta F=-k_{\mathrm{B}} T 2 N\left[\ln 2+\ln Z_{1}-\ln (N)-\ln 2+1-\left(\ln Z_{1}-\ln N+1\right)\right]=0$ hence $\Delta S=0$, which is correct!

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

5CCP4000 COURSE NOTES :


\begin{gathered}
P(p) \mathrm{d} p=\frac{1}{N} \quad \frac{V}{h^{3}} 4 \pi p^{2} \mathrm{~d} p \frac{N h^{3}}{V}\left(2 \pi m k_{\mathrm{B}} T\right)^{-\frac{3}{2}} \exp \left(-\frac{p^{2}}{2 m k_{\mathrm{B}} T}\right) \
P(p) \mathrm{d} p=4 \pi p^{2}\left(2 \pi m k_{\mathrm{B}} T\right)^{-\frac{3}{2}} \exp \left(-\frac{p^{2}}{2 m k_{\mathrm{B}} T}\right) \mathrm{d} p
\end{gathered}




发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注