# 线性代数作业代写linear algebra代考

## 代写线性代数作业代写linear algebra

### 线性映射Linear map代写

• 线性子空间Linear subspace
• 线性生成空间Linear span
• 矩阵 Matrix (mathematics)

## 线性代数的历史

The procedure (using counting rods) for solving simultaneous linear equations now called Gaussian elimination appears in the ancient Chinese mathematical text Chapter Eight: Rectangular Arrays of The Nine Chapters on the Mathematical Art. Its use is illustrated in eighteen problems, with two to five equations..

## 线性代数课后作业代写

This function is one-to-one because if
$$\operatorname{Rep}{B}\left(u{1} \vec{\beta}{1}+\cdots+u{n} \vec{\beta}{n}\right)=\operatorname{Rep}{B}\left(v_{1} \vec{\beta}{1}+\cdots+v{n} \vec{\beta}{n}\right)$$ then $$\left(\begin{array}{c} u{1} \ \vdots \ u_{n} \end{array}\right)=\left(\begin{array}{c} v_{1} \ \vdots \ v_{n} \end{array}\right)$$
and so $u_{1}=v_{1}, \ldots, u_{n}=v_{n}$, and therefore the original arguments $u_{1} \vec{\beta}{1}+\cdots+$ $u{n} \vec{\beta}{n}$ and $v{1} \vec{\beta}{1}+\cdots+v{n} \vec{\beta}{n}$ are equal. This function is onto; any $n$-tall vector $$\vec{w}=\left(\begin{array}{c} w{1} \ \vdots \ w_{n} \end{array}\right)$$