高级水动力学 Advanced Hydrodynamics PHYS97001

这是一份 Imperial帝国理工大学 PHYS97001作业代写的成功案例

高级水动力学 Advanced Hydrodynamics PHYS97001
问题 1.

$$
m \Delta u=m l \frac{\partial u}{\partial y}
$$
The mass of fluid actually moving from one level $y_{0}$ to level $y_{0}+_{1}$ is proportional to $\rho\left|v^{\prime}\right|$, which leads to the expression for $\tau$
$$
\tau=m \Delta u=\rho\left|v^{\prime}\right| l \frac{\partial u}{\partial y}
$$

证明 .

For continuity reasons we must have
$$
v^{\prime} \sim u^{\prime} \sim|l| \frac{\partial u}{\partial y}
$$
This means that
$$
\tau=\rho l^{2}\left|\frac{\partial u}{\partial y}\right| \frac{\partial u}{\partial y}
$$
which expresses $\tau$ in terms of the mean flow.

英国论文代写Viking Essay为您提供作业代写代考服务

PHYS97001 COURSE NOTES :

The work done by the pressure is, per unit time
$$
p u_{i} n_{i} d S=p u_{n} d S
$$
so that the total energy flux through $d S$ is
$$
d E_{f}\left(x_{i}, t\right)=\left(p+\rho g z+\frac{1}{2} \rho u_{i} u_{i}\right) u_{n} d S
$$
and we can determine the total energy flux by integrating over the entire surface
$$
E_{f}\left(x_{i}, t\right)=\int_{S}\left(p+\rho g z+\frac{1}{2} \rho u_{i} u_{i}\right) u_{i} n_{i} d S
$$








发表评论

您的电子邮箱地址不会被公开。