高级货币经济学 Adv. Monetary Economics ECON3008

这是一份nottingham诺丁汉大学ECON3008作业代写的成功案例

高级货币经济学 Adv. Monetary Economics ECON3008


If market agents do not suffer from money illusion, a change in $P$ and a change in $Y^{n}$ by the multiple $\lambda$ will change the demand for money by the same amount (homogeneity hypothesis of money demand):
$$
\lambda \cdot L^{n}=f\left(\lambda \cdot P, r_{B}, r_{E}, \frac{\dot{P}}{P}, \lambda \cdot Y^{n}\right) .
$$
If holds true for any arbitrary realisation of the parameter $\lambda$, we can, for instance, define $\lambda=1 / Y^{\pi}$. Substituting this expression in yields:
$$
\begin{gathered}
\frac{1}{Y^{n}} \cdot L^{n}=f\left(\frac{P}{Y^{n}}, r_{B}, r_{E}, \frac{\dot{P}}{P}, 1\right) \text { and, by rearranging } \
L^{n}=f\left(\frac{P}{Y^{n}}, r_{B}, r_{E}, \frac{\dot{P}}{P}, 1\right) \cdot Y^{n} .
\end{gathered}
$$






英国论文代写Viking Essay为您提供作业代写代考服务

ECON3008 COURSE NOTES :

$$
n R_{t}^{(n)}=(n-1) E_{t} R_{t+1}^{(n-1)}+r_{t}+T_{t}^{(n)}
$$
one period yields:
$$
(n-1) R_{t+1}^{(n-1)}=(n-2) E_{t+1} R_{t+2}^{(n-2)}+r_{t+1}+T_{t+1}^{(n-1)}
$$
When we take expectations of by writing $E_{t} E_{t+1}=E_{t}$ and substituting in yields:
$$
n R_{t}^{(n)}=(n-2) E_{t} R_{t+2}^{(n-2)}+E_{t}\left(r_{t+1}+r_{t}\right)+E_{t}\left(T_{t+1}^{(n-1)}+T_{t}^{(n)}\right) .
$$











发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注