高级工程数学|ENG2005 Advanced engineering mathematics代写 monash代写

0

这是一份monash悉尼大学ENG2005的成功案例

高级工程数学|ENG2005 Advanced engineering mathematics代写 monash代写


问题 1.


$$
\lambda^{2}+4 \lambda+3=0,
$$
with the roots $\lambda_{1}=-1$ and $\lambda_{2}=-3$, so the complementary function is
$$
y_{c}(x)=C_{1} e^{-x}+C_{2} e^{-3 x} \text {. }
$$
The nonhomogeneous term $e^{-x}$ is contained in the complementary function, so by Step 3 (b) in Table $6.2$ we must seek a particular integral of the form
$$
y_{p}(x)=A x e^{-x} .
$$

证明 .

Substituting the expression for $y_{p}(x)$ into the differential equation gives $\left(-2 A e^{-x}+A x e^{-x}\right)+4\left(A e^{-x}-A x e^{-x}\right)+3 A x e^{-x}=e^{-x}, \quad$ or $2 A e^{-x}=e^{-x}$, showing that $A=1 / 2$. So, in this case, the particular integral is $y_{P}(x)=(1 / 2) x e^{-x}$ and the general solution is
$$
y(x)=C_{1} e^{-x}+C_{2} e^{-3 x}+(1 / 2) x e^{-x} .
$$
The initial condition $y(0)=2$ will be satisfied if
$$
2=C_{1}+C_{2},
$$
and the initial condition $y^{\prime}(0)=1$ will be satisfied if
$$
1 / 2=-C_{1}-3 C_{2}
$$






英国论文代写Viking Essay为您提供作业代写代考服务

ENG2005 COURSE NOTES :

$$
\lambda^{2}+2 \lambda+1=0
$$
with the repeated root $\lambda=-1$. Thus, the complementary function is
$$
y_{c}(x)=C_{1} e^{-x}+C_{2} x e^{-x} .
$$
Two linearly independent solutions are thus
$$
y_{1}(x)=e^{-x} \text { and } y_{2}(x)=x e^{-x} \text {, }
$$
while the nonhomogeneous term is $f(x)=x e^{-x}$. The Wronskian
$$
W(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=e^{-x}\left(e^{-x}-x e^{-x}\right)+e^{-x} x e^{-x}=e^{-2 x}
$$
so substituting in shows that the particular integral is
$$
y_{p}(x)=-e^{-x} \int x^{2} \mathrm{~d} x+x e^{-x} \int x \mathrm{~d} x=\frac{1}{6} x^{3} e^{-x} .
$$
The general solution is
$$
y(x)=C_{1} e^{-x}+C_{2} x e^{-x}+\frac{1}{6} x^{3} e^{-x} .
$$
This result could, of course, have been found by the method of undetermined coefficients.




















多变量微积分|MTH2010 – Multivariable calculus代写 monash代写

0

这是一份monash悉尼大学MTH2010的成功案例

多变量微积分|MTH2010 – Multivariable calculus代写 monash代写


问题 1.

As the picture illustrates, a point $X=(x, y)$ lies on $\ell$ if and only if the vector $\mathbf{X}$ is of the form $\mathbf{P}{\mathbf{0}}+t \mathbf{v}$, for some (positive or negative) scalar $t$. (For the point $X$ shown, $t=2$.) Therefore, points on the line are those that satisfy the vector equation $$ (x, y)=\left(x{0}, y_{0}\right)+t(a, b)
$$

证明 .

for some real number $t$. This means that we can think of the line as the image of the vectorvalued function $\mathbf{X}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined for all real numbers $t$ by $\mathbf{X}(t)=\left(x_{0}, y_{0}\right)+t(a, b)$. In the language of parametric equations, $\ell$ can be parametrized by
$$
x(t)=x_{0}+a t ; \quad y(t)=y_{0}+b t ; \quad-\infty<t<\infty .
$$
As $t$ ranges through all real numbers, $\mathbf{X}(t)$ traces out the entire line, which is infinite in both directions.






英国论文代写Viking Essay为您提供作业代写代考服务

MTH2010 COURSE NOTES :

The line is determined either by the vector-valued function
$$
\mathbf{X}(t)=(0.28,-0.96,1.67)+t(.96,0.28,0.33)
$$
or, equivalently, by the parametric equations
$$
x=0.28+0.96 t ; \quad y=-0.96+0.28 t ; \quad z=1.67+0.33 t,
$$
whichever we please. For good measure, here is yet another equivalent description:
$$
\mathbf{X}(t)=(0.28+0.96 t) \mathbf{i}+(-0.96+0.28 t) \mathbf{j}+(1.67+0.33 t) \mathbf{k}
$$
Notice that time $t=0$ corresponds to the point $(0.28,-0.96,1.67)$-no matter the form.




















场和量子物理学|PHS1022 Fields and quantum physics代写 monash代写

0

这是一份monash悉尼大学PHS1022的成功案例

场和量子物理学|PHS1022 Fields and quantum physics代写 monash代写


问题 1.

$$
\bar{\rho}{D}(t) \equiv e^{-\left(\mathcal{L}{x}+\mathcal{L}{p}\right) t} \tilde{\rho}{D}(t)
$$
to obtain
$$
\dot{\bar{\rho}}{D}=\overline{\mathcal{L}}{s p}(t) \bar{\rho}{D} $$ with the superoperator $$ \overline{\mathcal{L}}{s p}(t) \equiv e^{-\left(\mathcal{L}{n}+\mathcal{L}{p}\right) t} \mathcal{L}{s p} e^{\left(\mathcal{L}{s}+\mathcal{L}_{p}\right) t}
$$

证明 .

taking the role of the interaction picture Liouvillian $(1 / i \hbar)\left[\tilde{H}{S R}(t), \cdot\right]$. To parallel , we have $$ \operatorname{tr}{p}\left[\bar{\rho}{D}(t)\right]=e^{-\mathcal{L}{n} t} \bar{\sigma}{-} a(t) \equiv \bar{\sigma}(t) $$ Then, after integratin once formally, substituting the integral form for $\bar{\rho}{D}(t)$ on the right-hand side of the equation, and taking the trace over the pump mode, we arrive at the equation of motion
$$
\dot{\bar{\sigma}}=\operatorname{tr}{p}\left[\overline{\mathcal{L}}{s p}(t) \rho_{D}(0)\right]+\int_{0}^{t} d t^{\prime} \operatorname{tr}{p}\left[\overline{\mathcal{L}}{s p}(t) \overline{\mathcal{L}}{s p}\left(t^{\prime}\right) \bar{\rho}{D}\left(t^{\prime}\right)\right]
$$
This equation is the analog.






英国论文代写Viking Essay为您提供作业代写代考服务

PHS1022 COURSE NOTES :

$$
q \equiv \tilde{\bar{\alpha}} / \tilde{\bar{\alpha}}{}, \quad p \equiv 1 / \tilde{\bar{\alpha}} \tilde{\bar{\alpha}}{},
$$
the equations to be solved are
$$
\begin{aligned}
&\frac{d q}{d \bar{t}}=\lambda\left(1-q^{2}\right) \
&\frac{d p}{d \bar{t}}=-p[\lambda(q+1 / q)-2]+2
\end{aligned}
$$
we have
$$
d q\left(\frac{1}{1+q}+\frac{1}{1-q}\right)=2 \lambda d \bar{t}
$$
whose direct integration gives the solution for $q$,
$$
q(\bar{t})=\frac{M(\bar{t})}{P(\bar{t})}
$$




















经典物理学和相对论|PHS1011 Classical physics and relativity代写 monash代写

0

这是一份monash悉尼大学PHS1011的成功案例

经典物理学和相对论|PHS1011 Classical physics and relativity代写 monash代写


问题 1.

$$
\mathbf{c}=(70.7,70.7) \mathrm{N}, \quad \mathbf{d}=(80.0,0.0) \mathrm{N} \quad\left(\mathrm{N}=\mathrm{Newton}=1 \frac{\mathrm{kg} \mathrm{m}}{\mathrm{s}^{2}}\right)
$$
It holds that
$$
\begin{aligned}
\mathbf{F}{\text {ges }} &=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=(-95.0,71.0) \mathrm{N} \ \left|\mathbf{F}{\text {ges }}\right| &=\sqrt{95.0^{2}+71.0^{2}} \mathrm{~N}=118.6 \mathrm{~N}
\end{aligned}
$$

证明 .

We remember that
$$
\mathbf{a}+\mathbf{b}=\sum_{i} a_{i} \mathbf{e}{i}+\sum{i} b_{i} \mathbf{e}{i}=\sum{i}\left(a_{i}+b_{i}\right) \mathbf{e}{i}=\left(a{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$
Graphical determination of the force: Representation by means of polygon of forces.

The angle $\beta$ enclosed by $\mathbf{F}$ and the $x$-axis may be calculated easily. One has
a
$$
\mathbf{F}=(-95.0,71.0) \mathrm{N}, \quad \frac{F_{y}}{F_{x}}=\tan \beta=-\frac{71.0}{95.0}
$$
b
from there it follows that $\beta=143^{\circ}$.





英国论文代写Viking Essay为您提供作业代写代考服务

PHS1011 COURSE NOTES :

For the vector product in it then results that $\mathbf{R}=\left(\mathbf{r}{1}-\mathbf{r}{2}\right) \times\left(\mathbf{r}{1}-\mathbf{r}{3}\right)=(-2,3,-1) \mathrm{m}^{2}=\left(R_{x}, R_{y}, R_{z}\right) .$
Inserting these values in one obtains
$$
\begin{aligned}
\lambda &=\frac{1}{2 \mathrm{~N}} R_{x}=-1 \mathrm{~m}^{2} \mathrm{~N}^{-1} \
F_{y} &=\frac{R_{y}}{\lambda}=-3 \mathrm{~N} \
F_{z} &=\frac{R_{z}}{\lambda}=1 \mathrm{~N}
\end{aligned}
$$
Thus, the components of the force $\mathbf{F}$ are
$$
\mathbf{F}=(2,-3,1) \mathrm{N} \text {. }
$$