高级量子理论|PH40084 Advanced quantum theory代写

0

这是一份bath巴斯大学PH40084作业代写的成功案

物理数学|PH40073 Mathematical physics代写


Derivation. Starting with a three-component wave function $\phi_{i}$ describing a massive spin-1 free particle in its rest frame, two possible rest-frame covariant forms exist: a covariant four-vector $\phi_{\mu}=\left(0, \phi_{i}\right)$ and a rank-two antisymmetric (field) tensor $\phi_{\mu \nu}$ given by (recall the angular-momentum tensor operators $L_{\mu v}$ and $J_{\mu v}$ in Chapter 3) $\phi_{0 i}=-\phi_{i 0}=\partial_{t} \phi_{i}$ and $\phi_{00}=\phi_{i j}=0$. In a general frame, the boosted form of $\phi_{\mu v}$ can be obtained from $\phi_{m}$ as
$$
\phi_{\mu v}=\partial_{\mu} \phi_{v}-\partial_{v} \phi_{\mu^{}} $$ The free-particle dynamical relation between $\phi_{\mu}$ and $\phi_{\mu v}$ is called the Proca equation: $$ \partial^{v} \phi_{\mu v}=m^{2} \phi_{\mu^{}}
$$
Owing to the antisymmetric structure of $\phi_{\mu \nu}$, the derivative of (4.38) implies the subsidiary condition
$$
\partial^{\mu} \phi_{\mu}=0
$$



英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

PH40084 COURSE NOTES :


Furthermore, since $H_{0}$ must be an observable hermitian operator, so must $\alpha_{i}$ and $\beta$ be hermitian:
$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad \beta^{\dagger}=\beta .
$$
The adjoint row bispinor $\psi^{\dagger}$ can be combined with the column bispinor $\psi$ to form a positive definite probability density
$$
\rho=\psi^{\dagger} \psi=\sum_{\sigma=1}^{4} \psi_{\sigma}^{*} \psi_{\sigma},
$$
now naturally linked with the hermitian probability current density
$$
\mathbf{j}=\psi^{\dagger} \boldsymbol{\alpha} \psi .
$$



高级量子理论|Advanced Quantum Theory代写 PHAS0069

0

这是一份ucl伦敦大学学院 PHAS0069作业代写的成功案

高级量子理论|Advanced Quantum Theory代写 PHAS0069
问题 1.

In the two-dimensional subspace of $\mathscr{H}$, and using the basis of eigenstates of $s_{3}=\sigma_{3} / 2$, define the density matrix
$$
\varrho^{(0)}=\left(\begin{array}{cc}
w_{+} & 0 \
0 & w_{-}
\end{array}\right)=\frac{1}{2}\left(\mathbb{1}+\zeta \sigma_{3}\right) \quad \text { with } \quad \zeta=w_{+}-w_{-}
$$


证明 .

By definition $w_{+}+w_{-}=1$ (this relation was used above), both numbers being real. The expectation values of the components of the spin operator are found to be
$$
\left\langle\mathbf{s}{1}\right\rangle=0=\left\langle\mathbf{s}{2}\right\rangle, \quad\left\langle\mathbf{s}{3}\right\rangle=\operatorname{tr}\left(e^{(0)} \frac{\sigma{3}}{2}\right)=\frac{1}{2} \zeta .
$$
In calculating these traces use was made of the formulae $\operatorname{tr} \sigma_{i}=0, \quad \operatorname{tr}\left(\sigma_{i} \sigma_{k}\right)=2 \delta_{i k}$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

PHAS0042 COURSE NOTES :

$$
q(t)=\beta+\frac{\alpha}{m} t,
$$
so that the flunction $S$ and its time derivative are
$$
\begin{aligned}
&S(\boldsymbol{q}, \boldsymbol{\alpha}, t)=\frac{\alpha^{2}}{2 m} t+\boldsymbol{\alpha} \cdot \boldsymbol{\beta}+c, \
&\frac{\mathrm{d} S(\boldsymbol{q}, \boldsymbol{\alpha}, t)}{\mathrm{d} t}=\boldsymbol{\alpha} \cdot \dot{\boldsymbol{q}}-\frac{1}{2 m} \alpha^{2}=\frac{\alpha^{2}}{2 m} .
\end{aligned}
$$