光谱理论|Spectral Theory MATH0071

0

这是一份UCL伦敦大学 MATH0071作业代写的成功案例

光谱理论|Spectral Theory MATH0071
问题 1.

If $\lambda<0$ then
$$
0=\phi_{+}(\lambda f+|\lambda| f)=\phi_{+}(\lambda f)+\phi_{+}(|\lambda| f)=\phi_{+}(\lambda f)+|\lambda| \phi_{+}(f) .
$$
Therefore
$$
\phi_{+}(\lambda f)=-|\lambda| \phi_{+}(f)=\lambda \phi_{+}(f) .
$$


证明 .

Therefore $\phi_{+}$is a linear functional on $\mathcal{B}$. It is non-negative in the sense defined above.

We define $\phi_{-}$by $\phi_{-}:=\phi_{+}-\phi$, and deduce immediately that it is linear. Since $f \in \mathcal{B}{+}$implies that $\phi{+}(f) \geq \phi(f)$, we see that $\phi_{-}$is non-negative. The boundedness of $\phi_{\pm}$will be a consequence of the boundedness of $|\phi|$ and the formulae
$$
\phi_{+}=\frac{1}{2}(|\phi|+\phi), \quad \phi_{-}=\frac{1}{2}(|\phi|-\phi)
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH0071 COURSE NOTES :

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$
which is defined by approximating $f$ by piecewise constant functions, for which the definition of the integral is evident. It is easy to show that the integral depends linearly on $f$ and that
$$
\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x
$$
Moreover
$$
\left\langle\int_{a}^{b} f(x) \mathrm{d} x, \phi\right\rangle=\int_{a}^{b}\langle f(x), \phi\rangle \mathrm{d} x
$$





线性偏微分方程|Linear Partial Differential Equations MATH0070

0

这是一份UCL伦敦大学 MATH0070作业代写的成功案例

线性偏微分方程|Linear Partial Differential Equations MATH0070
问题 1.

Newtonian potential. Let $f \in \mathcal{D}^{\prime}$. The convolutions
$$
V_{n}=\frac{1}{|x|^{n-1}} * f, \quad n \geq 3 ; \quad V_{2}=\ln \frac{1}{|x|} * f, \quad n=2
$$
(if they exist) are called the Newtonian (for $n=2$, the logarithmic) potential with density $f$.
The potential $V_{n}$ satisfies the Poisson equation
$$
\Delta V_{n}=-(n-2) \sigma_{n} f, \quad n \geq 3 ; \quad \Delta V_{2}=-2 \pi f .
$$


证明 .

Indeed, using the formula of Sec. $2.4$ and, we obtain, for $n \geq 3$,
$$
\begin{aligned}
\Delta V_{n} &=\Delta\left(\frac{1}{|x|^{n-1}} * f\right)=\Delta \frac{1}{|x|^{n-2}} * f \
&=-(n-2) \sigma_{n} \delta * f=-(n-2) \sigma_{n} f
\end{aligned}
$$
We proceed in similar fashion in the case of $n=2$ as well.


英国论文代写Viking Essay为您提供作业代写代考服务

MATH0070 COURSE NOTES :

$$
\begin{aligned}
&a(x)=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} \delta(x) \
&a * u=\sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} u(x)
\end{aligned}
$$
linear difference equations:
$$
\begin{aligned}
a(x) &=\sum_{\alpha} a_{\alpha} \delta\left(x-x_{\alpha}\right), \
a * u &=\sum_{\alpha} a_{\alpha} u\left(x-x_{\alpha}\right)
\end{aligned}
$$