物理学|PHYS1002 Physics 1 (Fundamentals)代写 monash代写

0

This course is a real-time, online course where the instructor and students meet via web conferencing tools, at scheduled days and times. Instructors and students share information, ideas and learning experiences in a virtual course environment. Participation in synchronous courses requires students to have reliable, high-speed internet access, a computer (ideally with a webcam), and a headset with a microphone.

这是一份monash悉尼大学PHYS1002的成功案例

物理学|PHYS1002 Physics 1 (Fundamentals)代写 monash代写


问题 1.

Let $Q_{B} Q_{R}, T_{R}$ and $W$, respectively, denote, the heat drawn by the refrigerator from the body at temperature $T$, out of which $Q_{R}$ is rejected in the room at temperature $T_{R}$ and a work $W$ is performed on the refrigerator. Now,
$$
Q_{R}=Q_{B}+W \text { and } Q_{B}=Q_{R}-W
$$
And the Coefficient of performance of the refrigerator, $(\mathrm{COF})=\frac{W}{Q_{R}}=\frac{\left(T_{R}-T\right)}{T_{R}}$ or
$$
Q_{R}=\frac{W T_{R}}{\left(T_{R}-T\right)}
$$


证明 .


Substituting this value of $Q_{R}$ in Eq. S-7.10.1 gives:
$$
\begin{aligned}
&Q_{B}=Q_{R}-W=\frac{W T_{R}}{\left(T_{R}-T\right)}-W=W\left(\frac{T}{\left(T_{R}-T\right)}\right) \
&W=\left(\frac{\left(T_{R}-T\right)}{T}\right) Q_{B}
\end{aligned}
$$
shows that in order to draw a quantity of heat $Q_{B}$ from the body at temperature $T$ the amount of work required to be done is $W$ whichis equal to $\left(\frac{\left(T_{R}-T\right)}{T}\right) Q_{B}$.







英国论文代写Viking Essay为您提供作业代写代考服务

PHS2061 COURSE NOTES :

The thermal capacity (at constant volume) is defined as $C_{V} \equiv\left(\frac{\partial U}{\partial T}\right){V}$, which in the present case is $K T^{3}$. Using the relation $\left(\frac{\partial S}{\partial T}\right){V}=\frac{1}{T}\left(\frac{\partial U}{\partial T}\right){V}=\frac{K T^{3}}{T}=K T^{2}$, and hence, $$ \Delta S=\int{T_{R}}^{0} K T^{2} d T=-\frac{K}{3} T_{R}^{3}
$$
Negative sign indicates that this is the decrease in the entropy.
Change in internal energy of the body may be calculated using the relation
$$
d U=C d T \quad \text { or } \quad \Delta U=\int_{T_{R}}^{0} K T^{3} d T=-\frac{K}{4} T_{R}^{4}
$$




















近代物理学|PHYS1002 Modern Physics代写 UWA代写

0

这是一份uwa西澳大学PHYS1002的成功案例

近代物理学|PHYS1002 Modern Physics代写 UWA代写


We claim that this equation, for a positive operator $\omega_{1}$ and $d^{2}$ unitaries $U_{x}$, implies that $\omega_{1}=d^{-1} \mathbb{I}$. To see this, expand the operator $A=|\phi\rangle\left\langle e_{k}\right| \omega_{1}^{-1}$ in the basis $U_{x}$ according to the formula $A=\sum_{x} U_{x} \operatorname{tr}\left(U_{x}^{} A \omega_{1}\right)$ : $$ \sum_{x}\left\langle e_{k}, U_{x}^{} \phi\right\rangle U_{x}=|\phi\rangle\left\langle e_{k}\right| \omega_{1}^{-1}
$$
Taking the matrix element $\left\langle\phi|\cdot| e_{k}\right\rangle$ of this equation and summing over $k$, we find
$$
\sum_{x, k}\left\langle e_{k}, U_{x}^{} \phi\right\rangle\left\langle\phi, U_{x} e_{k}\right\rangle=\sum_{x} \operatorname{tr}\left(U_{x}^{}|\phi\rangle\langle\phi| U_{x}\right)=d^{2}|\phi|^{2}=|\phi|^{2} \operatorname{tr}\left(\omega_{1}^{-1}\right)
$$
Hence $\operatorname{tr}\left(\omega_{1}^{-1}\right)=d^{2}=\sum_{k} r_{k}^{-1}$, where $r_{k}$ are the eigenvalues of $\omega_{1}$. Using again the fact that the smallest value of this sum under the constraint $\sum_{k} r_{k}=1$ is attained only for constant $r_{k}$, we find $\omega_{1}=d^{-1}$ I. and $\Omega$ is indeed maximally entangled.

英国论文代写Viking Essay为您提供作业代写代考服务

PHYS1002 COURSE NOTES :

Prepare the ground state
$$
\left|\varphi_{1}\right\rangle=|0 \ldots 0\rangle \otimes|0 \ldots 0\rangle
$$
in both quantum registers.
Achieve equal amplitude distribution in the first register, for instance by an application of a Hadamard transformation to each qubit:
$$
\left|\varphi_{2}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbf{Z}{2}^{n}}|x\rangle \otimes|0 \ldots 0\rangle . $$ Apply $V{f}$ to compute $f$ in superposition. We obtain
$$
\left|\varphi_{3}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbf{Z}^{n}}|x\rangle|f(x)\rangle .
$$