# 数学 Maths 2 PHYS130001/PHYS238001

0

Let $b_{\alpha \beta \mid \sigma}:=\partial_{\sigma} b_{\alpha \beta}-\Gamma_{\alpha \sigma}^{\tau} b_{\tau \beta}-\Gamma_{\beta \sigma}^{\tau} b_{\alpha \tau}$ denote the first-order covariant derivatives of the curvature tensor, defined here by means of its covariant components. Show that these covariant derivatives satisfy the Codazzi-Mainardi identities
$$b_{\alpha \beta \mid \sigma}=b_{\alpha \sigma \mid \beta}$$
which are themselves equivalent to the relations (Thm. 2.8-1)
$$\partial_{\sigma} b_{\alpha \beta}-\partial_{\beta} b_{\alpha \sigma}+\Gamma_{\alpha \beta}^{\tau} b_{\tau \sigma}-\Gamma_{\alpha \sigma}^{\tau} b_{\tau \beta}=0$$
Hint: The proof is analogous to that given in for establishing the relations $\left.b_{\beta}^{\tau}\right|{\alpha}=\left.b{\alpha}^{\tau}\right|_{\beta}$.

## PPHYS130001/PHYS238001COURSE NOTES ：

$u_{i}^{\varepsilon}\left(x^{\varepsilon}\right)=u_{i}(\varepsilon)(x)$ for all $x^{\varepsilon}=\pi^{\varepsilon} x \in \bar{\Omega}^{\varepsilon}$,
where $\pi^{c}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, \varepsilon x_{3}\right)$. We then assume that there exist constants $\lambda>0, \mu>0$ and functions $f^{i}$ independent of $\varepsilon$ such that
$$\begin{gathered} \lambda^{\varepsilon}=\lambda \text { and } \mu^{\varepsilon}=\mu, \ f^{i, \varepsilon}\left(x^{\varepsilon}\right)=\varepsilon^{p} f^{i}(x) \text { for all } x^{\varepsilon}=\pi^{e} x \in \Omega^{\varepsilon}, \end{gathered}$$