# 非线性计量经济学分析代写Nonlinear Econometric Analysis代考

0

## 代写非线性计量经济学分析作业代写Nonlinear Econometric Analysis

### 脉冲响应分析Impulse Response Analysis代写

• Linear Models线性模型
• Microeconometrics微观经济计量学

## 非线性计量经济学的相关

Micro-econometric models, including large sample theory for estimation and hypothesis testing, generalized method of moments (GMM), estimation of censored and truncated specifications, quantile regression, structural estimation, nonparametric and semiparametric estimation, treatment effects, panel data, bootstrapping, simulation methods, and Bayesian methods. The methods are illustrated with economic applications.

## 非线性计量经济学相关课后作业代写

$$E\left(\tau-1\left(y_{t} \leq x_{t}^{\prime} \beta_{0}\right)\right) x_{t}=E\left(\tau-\operatorname{Pr}\left(y_{t} \leq x_{t}^{\prime} \beta_{0} \mid x_{t}\right)\right) x_{t}=0 .$$

• Sample moment condition:
\begin{aligned} 0 & \approx \frac{1}{n} \sum_{t=1}^{n} x_{t}\left(\tau-1\left(y_{t} \leq x_{t}^{\prime} \hat{\beta}\right)\right) \ &=\frac{1}{n} \sum_{t=1}^{n} x_{t}\left[\tau 1\left(y>x_{t}^{\prime} \hat{\beta}\right)-(1-\tau) 1\left(y_{t} \leq x_{t}^{\prime} \hat{\beta}\right)\right] . \end{aligned}

# 时间序列分析代写Time Series Analysis代考

0

## 代写时间序列分析作业代写Time Series Analysis

### 探索性分析 Exploratory analysis代写

• Function approximation函数近似
• Prediction and forecasting预测和预报
• Signal estimation信号估计

## 经济学中的统计方法的相关

Time Series Analysis is the way of studying the characteristics of the response variable with respect to time, as the independent variable. To estimate the target variable in the name of predicting or forecasting, use the time variable as the point of reference. In this article we will discuss in detail TSA Objectives, Assumptions, Components (stationary, and Non- stationary). Along with the TSA algorithm and specific use cases in Python.

## 时间序列分析相关课后作业代写

$$\begin{gathered} x_{1, t} \simeq-(1-\theta B)^{-1} a_{t-1}=-\sum_{j=0}^{\infty} \theta^{j} B^{j} a_{t-1} \ x_{2, t} \simeq-\left(1-\Theta B^{12}\right)^{-1} a_{t-12}=-\sum_{i=0}^{\infty} \Theta^{i} B^{12 i} a_{t-12} \end{gathered}$$
Therefore, for large samples, the information matrix is
$$\mathbf{I}(\theta, \Theta)=n\left[\begin{array}{ll} \left(1-\theta^{2}\right)^{-1} & \theta^{11}\left(1-\theta^{12} \Theta\right)^{-1} \ \theta^{11}\left(1-\theta^{12} \Theta\right)^{-1} & \left(1-\Theta^{2}\right)^{-1} \end{array}\right]$$

# 经济学中的统计方法代写Statistical Method in Economics 代考

0

## 代写经济学中的统计方法作业代写Statistical Method in Economics

### 应用统计学Applied statistics代写

• Computational statistics计算性统计
• Bayesian network贝叶斯网络
• Descriptive statistics敘述统计学

## 经济学中的统计方法的相关

Statistical methods are mathematical formulas, models, and techniques that are used in statistical analysis of raw research data. The application of statistical methods extracts information from research data and provides different ways to assess the robustness of research outputs.

## 经济学中的统计方法相关课后作业代写

Let $X_{1}, \ldots, X_{n}$ be iid Poisson $(\lambda)$ and let $\lambda$ have a Gamma $(\alpha, \beta)$ distribution (the conjugate family for Poisson)
$$\pi(\lambda)=\lambda^{\alpha-1} \frac{\exp {-\lambda / \beta}}{\Gamma(\alpha) \beta^{\alpha}}$$
(a) Find the posterior distribution for $\lambda$.
(b) Calculate posterior mean and variance. Hint: mean of Gamma $(\alpha, \beta)$ is $\alpha \beta$; the variance is $\alpha \beta^{2}$.
(c) Discuss whether the prior vanishes asymptotically.
(d) Assume that $\alpha$ is an integer. Show that the posterior for $\frac{2(n \beta+1)}{\beta} \lambda$ given $X$ is $\chi^{2}\left(2\left(\alpha+\Sigma X_{i}\right)\right)$.
(e) Using result of (d), suggest a $95 \%$-credible interval for $\lambda$.

# 计量经济学代写Econometrics 代考

0

## 代写计量经济学作业代写Econometrics

### 控制理论Control theory代写

• Regression analysis回归分析
• Quasi-experiment准实验
• Simultaneous equations model同步方程模型
• Natural logarithm自然对数

## 计量经济学的相关

Econometrics uses economic theory, mathematics, and statistical inference to quantify economic phenomena. In other words, it turns theoretical economic models into useful tools for economic policymaking.

## 计量经济学相关课后作业代写

Specifically, we will focus on SV of order one $\left(L_{w}=1\right)$. Set
$$\begin{gathered} \theta=\left(a, r_{y}, r_{w}\right)^{\prime} \ v_{l}(\theta) \equiv \exp \left(\frac{a w_{l-1}+r_{w} v_{l}}{2}\right) r_{y} z_{t}, \quad \forall t \end{gathered}$$
Models (2.1) and (2.2) may then be conveniently rewritten as the following identity:
$$y_{t}-x_{t}^{\prime} \beta=v_{R}(\theta), \quad \forall t$$

# 战略和信息代写Strategy and Information代考

0

## 代写战略和信息作业代写Strategy and Information

### 信息规划和战略计划Information Planning and Strategic Planning代写

• Operational excellence卓越运营
• Customer intimacy客户亲和力

## 战略和信息的相关

This is an advanced course in game theory. We begin with a rigorous overview of the main equilibrium concepts for non-cooperative games in both static and dynamic settings with either complete or incomplete information. We define and explore properties of iterated strict dominance, rationalizability, Nash equilibrium, subgame perfection, sequential, perfect and proper equilibria, the intuitive criterion, and iterated weak dominance.

## 战略和信息相关课后作业代写

(a) By taking specific psychological, electronic, or physical actions that add, modify, or remove information from the environment of various individuals or groups of decision makers.
(b) By taking actions to affect the infrastructure that collects, communicates, processes, and/or stores information in support of targeted decision makers.
(c) By influencing the way people receive, process, interpret, and use data, information, and knowledge. (United States Joint Staff, 2006: 1-9)

# 网络代写Networks 代考

0

## 代写网络作业代写Networks

### 一般社会网络分析Social network analysis代写

• Network science网络科学
• Scale-free network无尺度网络
• Small-world network小世界网络

## 网络的相关

Network theory has applications in many disciplines including statistical physics, particle physics, computer science, electrical engineering,biology, archaeology, economics, finance, operations research, climatology, ecology, public health,sociology and neuroscience.Applications of network theory include logistical networks, the World Wide Web, Internet, gene regulatory networks, metabolic networks, social networks,epistemological networks, etc.; see List of network theory topics for more examples.

## 网络相关课后作业代写

$$b_{j}=\sum_{z=1}^{Z} y_{j}(z) \varepsilon(z), \quad j=1_{, \ldots,} H_{1}$$
Notice that
$b_{0}=\sum_{z=1}^{Z} \varepsilon(z), \quad$ because $\quad x_{0 k}(z)=1 ; \quad z=1, \ldots, Z$
Expressions (13.3) and (13.4) give
$$\mathbf{a}^{T} \mathbf{b}=\sum_{j=1}^{H_{1}} a_{j} b_{j}=\sum_{z=1}^{Z}\left|\sum_{j=1}^{H_{1}} a_{j} y_{j}(z)+a_{0}\right|$$
or
$$\mathbf{a}^{T} \mathbf{b}=\sum_{z=1}^{Z}|g(z)|$$

# 心理学与经济学代写Psychology and Economics代考

0

## 代写心理学与经济学作业代写Psychology and Economics

### 一般均衡中的局部均衡思维Partial Equilibrium Thinking in General Equilibrium代写

• Belief Updating信念更新
• Dynamic Preference动态偏好
• Quantifying the Restrictiveness of Theories量化理论的局限性

## 心理学与经济学的相关

Psychology and Economics (aka Behavioral Economics) is a growing subfield of economics that incorporates insights from psychology and other social sciences into economics. This course covers recent advances in behavioral economics by reviewing some of the assumptions made in mainstream economic models, and by discussing how human behavior systematically departs from these assumptions.

## 心理学与经济学的相关课后作业代写

(2 points) First, Richard makes the assumption that Paul has very simple preferences over time: he assumes that Paul is an exponential discounter. What is Paul’s implied yearly discount factor $\delta$ given his answer?
Solution: His discount rate is given by $\delta=\left(\frac{10}{11}\right)^{365} \approx 7.8 \times 10^{-16}$.

# 合同理论代写Contract Theory代考

0

## 代写合同理论作业代写Contract Theory

### 道德风险Moral hazard代写

• Signalling (economics)信号理论 (经济学)
• Expected utility hypothesis预期效用假说

## 合同理论的相关

A standard practice in the microeconomics of contract theory is to represent the behaviour of a decision maker under certain numerical utility structures, and then apply an optimization algorithm to identify optimal decisions. Such a procedure has been used in the contract theory framework to several typical situations, labeled moral hazard, adverse selection and signalling.

## 合同理论的相关课后作业代写

Clearly here it is socially efficient for both downstream firms to procure their inputs from the efficient upstream firm. Moreover, the joint profits of all three firms,
$$\Pi=\left(1-x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)$$
are maximized by setting
$$\left(x_{1}+x_{2}\right)=\frac{1}{2}$$
In our previous notation this example is such that $f(\mathbf{x})=0$, since costs are zero for the upstream firm, and
$$u_{i}\left(x_{i}, x_{j}\right)=\left(1-x_{i}-x_{j}\right) x_{i}$$

# 热物理和物质属性|Thermal Physics & Properties of Matter代写    5CCP4000代考

0

The correct argumentation realises, that the particles are indistinguishable!
Before removing the separator:
$$Z_{\mathrm{a}}=\frac{Z_{1}^{N}}{N !} \cdot \frac{Z_{1}^{N}}{N !}$$
After removing the separator:
$$Z_{\mathrm{b}}=\frac{\left(2 Z_{1}\right)^{2 N}}{(2 N) !}$$

Before removing the separator: $F_{\mathrm{a}}=-k_{\mathrm{B}} T \ln \left(\frac{Z_{1}^{N}}{N !} \cdot \frac{Z_{1}^{N}}{N !}\right)=-k_{\mathrm{B}} T 2\left[N \ln Z_{1}-N \ln N+N\right]$ After removing the separator: $F_{\mathrm{b}}=-k_{\mathrm{B}} T \ln \left(\frac{\left(2 Z_{1}\right)^{2 N}}{(2 N) !}\right)=-k_{\mathrm{B}} T\left[2 N \ln 2 Z_{1}-2 N \ln (2 N)+2 N\right]$ and $\Delta F=-k_{\mathrm{B}} T 2 N\left[\ln 2+\ln Z_{1}-\ln (N)-\ln 2+1-\left(\ln Z_{1}-\ln N+1\right)\right]=0$ hence $\Delta S=0$, which is correct!

## 5CCP4000 COURSE NOTES ：

\begin{gathered}
P(p) \mathrm{d} p=\frac{1}{N} \quad \frac{V}{h^{3}} 4 \pi p^{2} \mathrm{~d} p \frac{N h^{3}}{V}\left(2 \pi m k_{\mathrm{B}} T\right)^{-\frac{3}{2}} \exp \left(-\frac{p^{2}}{2 m k_{\mathrm{B}} T}\right) \
P(p) \mathrm{d} p=4 \pi p^{2}\left(2 \pi m k_{\mathrm{B}} T\right)^{-\frac{3}{2}} \exp \left(-\frac{p^{2}}{2 m k_{\mathrm{B}} T}\right) \mathrm{d} p
\end{gathered}

# 纳米系统的理论处理|Theoretical Treatments Of Nano-systems代写   7CCP4473代考

0

$$\frac{\partial T(t, x)}{\partial t}=k^{2} \frac{\partial^{2} T(t, x)}{\partial x^{2}}$$
with initial and boundary conditions
$$T\left(t_{0}, x\right)=T_{t}(x), T\left(t, x_{0}\right)=T_{0} \text { and } T\left(t, x_{f}\right)=T_{f} \text {. }$$
A large number of analytical and numerical methods are available to solve the heat equation.
The analytic solution if
$$T\left(t, x_{0}\right)=0 \text { and } T\left(t, x_{f}\right)=0$$

is given as
\begin{aligned} &T(t, x)=\sum_{i=1}^{\infty} B_{i} \sin \frac{i \pi x}{x_{f}} e^{-i^{2} \frac{k^{2} \pi^{2}}{x_{f}^{2}} t} \ &B_{i}=\frac{2}{x_{f}} \int_{x_{0}}^{x_{f}} T_{t}(x) \sin \frac{i \pi x}{x_{f}} d x \end{aligned}

## 7CCP4473 COURSE NOTES ：

$M={E, O, I} .$
The second entry is a letter chosen from the geometric set
$$G={P, S, T, N, C, A} \text {. }$$
That is, the actuator/sensor set is give as
$M G={(E, P),(E, S),(E, T), \cdots,(I, N),(I, C),(I, A)} .$
In general, we have
$M G={(m, g): m \quad M$ and $g \quad G} .$