2022 Australian National University|EMET3007/8012 Assignment 2

0

这是一份2022秋季的 Australian National University澳洲国立大学EMET3007/8012作业代写的成功案例





Instructions:

This assignment is worth either $20 \%$ or $25 \%$ of the final grade, and is worth a total of 75 points. All working must be shown for all questions. For questions which ask you to write a program, you must provide the code you used. If you have found code and then modified it, then the original source must be cited. The assignment is due by $5 \mathrm{pm}$ Friday 1st of October (Friday of Week 8), using Turnitin on Wattle. Late submissions will only be accepted with prior written approval. Good luck.

2022 Matlab代写EMET3007/8012 Assignment代写

问题 1.

[10 marks] In this exercise we will consider four different specifications for forecasting monthly Australian total employed persons. The dataset (available on Wattle) AUSEmp 1oy 2022. csv contains three columns; the first column contains the date; the second contains the sales figures for that month (FRED data series LFEMTTTTAUM647N), and the third contains Australian GDP for that month.1] The data runs from January 1995 to January $2022 .$

Let $M_{i t}$ be a dummy variable that denotes the month of the year. Let $D_{i t}$ be a dummy variable which denotes the quarter of the year. The four specifications we consider are
$$
\begin{aligned}
&S_1: y_t=a_0+a_1 t+\alpha_4 D_{4 t}+\epsilon_t \
&S_2: y_t=a_1 t+\sum_{i=1}^4 \alpha_i D_{i t}+\epsilon_t \
&S_3: y_t=a_0+a_1 t+\beta_{12} M_{12, t}+\epsilon_t \
&S_4: y_t=a_1 t+\sum_{i=1}^{12} \beta_i M_{i t}+\epsilon_t
\end{aligned}
$$
where $\mathbb{E} \epsilon_t=0$ for all $t$.

a) For each specification, describe this specification in words.
b) For each specification, estimate the values of the parameters, and compute the MSE, $\mathrm{AIC}$, and BIC. If you make any changes to the csv file, please describe the changes you make. As always, you must include your code.
c) For each specification, compute the MSFE for the 1-step and 5-step ahead forecasts, with the out-of-sample forecasting exercise beginning at $T_0=50$.
d) For each specification, plot the out-of-sample forecasts and comment on the results.

问题 2.

[10 marks] Now add to Question 1 the additional assumption that $\epsilon_t \sim \mathcal{N}\left(0, \sigma^2\right)$. One estimator ${ }^2$ for $\sigma^2$ is
$$
\hat{\sigma}^2=\frac{1}{T-k} \sum_{t=1}^T\left(y_t-\hat{y}_t\right)^2
$$
where $\hat{y}_t$ is the estimated value of $y_t$ in the model and $k$ is the number of regressors in the specification.
a) For each specification $\left(S_1, \ldots, S_4\right)$, compute $\hat{\sigma}^2$.
b) For each specification, make a $95 \%$ probability forecast for the sales in June $2021 .$
c) For each specification, compute the probability that the total employed persons in June 2022 will be greater than $13.5$ million. According to the FRED series LFEMTTTTAUM647N, what was the actual employment level for that month.
d) Do you think the assumption that $\epsilon_t$ is iid is a reasonable assumption for this data series.

问题 3.

[10 marks] Here we investigate whether adding GDP $\mathrm{Gs}^3$ as a predictor can improve our forecasts. Consider the following modified specifications:
$$
\begin{aligned}
&S_1^{\prime}: y_t=a_0+a_1 t+\alpha_4 D_{4 t}+\gamma x_{t-h}+\epsilon_t \
&S_2^{\prime}: y_t=a_1 t+\sum_{i=1}^4 \alpha_i D_{i t}+\gamma x_{t-h}+\epsilon_t \
&S_3^{\prime}: y_t=a_0+a_1 t+\beta_{12} M_{12, t}+\gamma x_{t-h}+\epsilon_t \
&S_4^{\prime}: y_t=a_1 t+\sum_{i=1}^{12} \beta_i M_{i t}+\gamma x_{t-h}+\epsilon_t
\end{aligned}
$$
where $\mathbb{E} \epsilon_t=0$ for all $t$, and $x_{t-h}$ is GDP at time $t-h$. For each specification, compute the MSFE for the 1-step ahead, and the 5-step ahead forecasts, with the out-of-sample forecasting exercise beginning at $T_0=50$. For each specification, plot the out-of-sample forecasts and comment on the results.

问题 4.

[15 marks] Here we investigate whether Holt-Winters smoothing can improve our forecasts. Use a Holt-Winters smoothing method with seasonality, to produce 1-step ahead and 5-step ahead forecasts and compute the MSFE for these forecasts. You should use smoothing parameters $\alpha=\beta=\gamma=0.3$ and start the out-of-sample forecasting exercise at $T_0=50$. Plot these out-of-sample forecasts and comment on the results.
Additionally, estimate the values for $\alpha, \beta$, and $\gamma$ which minimise the MSFE. Find the MSFE for these parameter vales and compare it to the baseline $\alpha=\beta=\gamma=0.3$.

问题 5.

[5 marks] Questions 1, 3 and 4 each provided alternative models for forecasting Australian Total Employment. Compare the efficacy of these forecasts. Your comparison should include discussions of MSFE, but must also make qualitative observations (typically based on your graphs).

问题 6.

[10 marks] Develop another model, either based on material from class or otherwise, to forecast Australian Total Employment. Your new model should perform better (have a lower MSFE or MAFE) than all models from Questions 1,3, and 4. As part of your response to this question you must provide:
a) a brief written explanation of what your model is doing,
b) a brief statement on why you think your new model will perform better,
c) any relevant equations or mathematics/statistics to describe the model,
d) the code to run the model, and
e) the MSFE and/or MAFE error found by your model, and a brief discussion of how this compares to previous cases.

问题 7.

[15 marks] Consider the ARX(1) model
$$
y_t=\mu+a t+\rho y_{t-1}+\epsilon_t
$$
where the errors follow an $\mathrm{AR}(2)$ process
$$
\epsilon_t=\phi_1 \epsilon_{t-1}+\phi_2 \epsilon_{t-2}+u_t, \quad \mathbf{u} \sim \mathcal{N}\left(0, \sigma^2 I\right)
$$
for $t=1, \ldots, T$ and $e_{-1}=e_0=0$. Suppose $\phi_1, \phi_2$ are known. Find (analytically) the maximum likelihood estimators for $\mu, a, \rho$, and $\sigma^2$.


Hint: First write $y$ and $\epsilon$ in vector/matrix form. You may wish to use different looking forms for each. Find the distribution of $\epsilon$ and $y$. Then apply some appropriate calculus. You may want to let $H=I-\phi_1 L-\phi_2 L^2$, where $I$ is the $T \times T$ identity matrix, and $L$ is the lag matrix.

这是一份2022秋季的 Australian National University澳洲国立大学EMET3007/8012作业代写的成功案例




















matlab作业代写matlab代考

0

如果你也在 怎样代写matlab这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

MATLAB(”MATrix LABoratory “的缩写)是由MathWorks公司开发的一种专有的多范式编程语言和数字计算环境。MATLAB允许进行矩阵操作、绘制函数和数据、实现算法、创建用户界面以及与用其他语言编写的程序对接。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

代写matlab作业代做matlab

尽管MATLAB主要用于数值计算,但一个可选的工具箱使用MuPAD符号引擎,允许访问符号计算能力。一个额外的软件包,Simulink,为动态和嵌入式系统增加了图形化的多域仿真和基于模型的设计。

matlab包含几个不同的主题,列举如下:

MuPAD代写

MuPAD是一个计算机代数系统(CAS)。最初由德国帕德博恩大学的MuPAD研究小组开发,从1997年开始由SciFace Software GmbH & Co. KG与MuPAD研究小组和其他一些大学的合作伙伴合作,从1997年开始开发。

Simulink代写

Simulink是一个基于MATLAB的图形化编程环境,用于建模、仿真和分析多域动态系统。它的主要界面是一个图形化的块图工具和一套可定制的块库。

其他相关科目课程代写:

  • 强弱型化Strong and weak typing
  • 单位矩阵Identity matrix
  • 共轭转置Conjugate transpose
  • λ演算 Lambda calculus

matlab的历史

2012年的第8版对该软件进行了一些特别大的改动。用户界面进行了重新设计[citation needed],Simulink的功能也得到了扩展。到2016年,MATLAB推出了一些技术和用户界面的改进,包括MATLAB Live Editor笔记本,以及其他功能。

matlab作业代写matlab代考

Some especially large changes to the software were made with version 8 in 2012.The user interface was reworked[citation needed] and Simulink’s functionality was expanded.By 2016, MATLAB had introduced several technical and user interface improvements, including the MATLAB Live Editor notebook, and other features.

微积分课后作业代写

(define eqv?
 (lambda (x y)
 (cond
 ((eq? x y))
 ((number? x)
 (and (number? y)
 (if (exact? x)
 (and (exact? y) (= x y))
 (and (inexact? y) (= x y)))))
 ((char? x) (and (char? y) (char=? x y)))
 (else #f))))
(eqv? 'a 3) #f
(eqv? #t 't) #f
(eqv? "abc" 'abc) #f


matlab课后作业代写的应用代写

MATLAB可以调用用C或Fortran编程语言编写的函数和子程序。创建的包装函数允许MATLAB数据类型被传递和返回。MEX文件(MATLAB可执行文件)是通过编译此类函数而创建的可动态加载的对象文件。自2014年以来,正在增加与Python的双向对接。

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。