电动力学和光学|PHYS3035/PHYS3935 Electrodynamics and Optics代写 sydney代写

The students are cultivated as high-quality innovative professionals. They are well developed in the
aspects of morality, intelligence, physique, and aesthetic. They possess the basic theoretical knowledge in
the fields of Materials Science and Physics,and are well trained in the applied research, technological
development, and engineering.

这是一份sydney悉尼大学PHYS3035/PHYS3935 的成功案例

电动力学和光学|PHYS3035/PHYS3935 Electrodynamics and Optics代写 sydney代写


问题 1.

$$
G(q, \omega)=\frac{1}{q^{2}-q_{0}^{2}}\left(U-\frac{q q}{q_{0}^{2}}\right)
$$
which sometimes is useful. Like the Huygens propagator, the dyadic Green function is also singular for $q=q_{0}$.

The plane-wave representation of the dyadic Green function for the magnetic field is obtained by inserting the Fourier integral transformation
$$
\boldsymbol{G}{\mathrm{M}}(\boldsymbol{R} ; \omega)=(2 \pi)^{-3} \int{-\infty}^{\infty} \boldsymbol{G}_{\mathrm{M}}(q, \omega) \mathrm{e}^{i \boldsymbol{q} \cdot \boldsymbol{R}} \mathrm{d}^{3} q
$$


证明 .


Calculations analogous to those carried out to determine $\boldsymbol{G}(\boldsymbol{R} ; \omega)$ result in
$$
\boldsymbol{G}{\mathrm{M}}(\boldsymbol{q}, \omega)=\frac{q}{q{0}} \frac{1}{q^{2}-q_{0}^{2}} \boldsymbol{U} \times \hat{\boldsymbol{q}}
$$
an expression which also is singular for $q=q_{0}$. The folding theorem in $\boldsymbol{r}$-space gives when applied to
$$
\boldsymbol{B}(q, \omega)=\frac{i \mu_{0} \omega}{c_{0}} \boldsymbol{G}{\mathrm{M}}(q, \omega) \cdot J(q, \omega) $$ A current density parallel to the $q$-direction does not give rise to a magnetic field, and the magnetic field generated by a current density perpendicular to $\hat{q}$ always lies in a plane perpendicular to $\hat{q}$. To prove the above-mentioned claims we expand the unit dyad after a triple set of orthogonal unit vectors $\hat{q}{\perp}^{(1)}, \hat{q}{\perp}^{(2)}$, and $\hat{q}$, with $\hat{\boldsymbol{q}}{1}^{(1)} \times \hat{\boldsymbol{q}}{2}^{(2)}=\hat{\boldsymbol{q}}$, i.e., $$ \boldsymbol{U}=\hat{\boldsymbol{q}}{\perp}^{(1)} \hat{q}{\perp}^{(1)}+\hat{\boldsymbol{q}}{\perp}^{(2)} \hat{\boldsymbol{q}}_{\perp}^{(2)}+\hat{q} \hat{q}
$$







英国论文代写Viking Essay为您提供作业代写代考服务

PHYS3035/PHYS3935 COURSE NOTES :

In the mixed representation, the electric field, $\boldsymbol{E}(z ; q |, \omega)$, from a current density distribution, $\boldsymbol{J}(z: q |, \omega)$, is outside the distribution given by
$$
E\left(z ; q_{|}, \omega\right)=i \mu_{0} \omega \int_{-\infty}^{\infty} G\left(z-z^{\prime} ; q_{1}, \omega\right) \cdot J\left(z^{\prime} ; q_{|}, \omega\right) \mathrm{d} z^{\prime}
$$
where
$$
G\left(Z ; q_{|}, \omega\right)=\Gamma\left(s g n Z ; q_{1}, \omega\right) \mathrm{e}^{i x_{\perp}|Z|}
$$
with
$$
\Gamma\left(\operatorname{sgn} Z: q_{|}, \omega\right)=\frac{i}{2 q_{0}^{2} \kappa \perp}\left[q_{0}^{2} U-q_{|} q_{|}-\kappa_{\perp}^{2} \hat{z} \bar{z}-\left(q_{|}^{\hat{z}}+\hat{z} q_{|}\right) \kappa_{\perp} \operatorname{sgn} Z\right]
$$
Let us now assume that the source current density is nonvanishing only on a plane sheet located at $z^{\prime}=z_{0}$. Thus,
$$
J\left(z^{\prime} ; q_{|}, \omega\right)=J_{0}\left(q_{|}, \omega\right) \delta\left(z^{\prime}-z_{0}\right)
$$




















发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注