经济学理论 Econometric Theory ECON2004

0

这是一份nottingham诺丁汉大学ECON2004作业代写的成功案例

宏观经济学理论 Macroeconomic Theory ECON2003


$$
\sigma_{t}^{2}=\sigma^{2} \exp g(t), \quad \text { or } \quad \log \sigma_{t}^{2}=\log \sigma^{2}+g(t)
$$
where $g(t)$ is a deterministic function that can represent a diurnal pattern and starts at zero, that is $g(0)=0$. The function $g(t)$ is typically very smooth so that deviations from a diurnal pattern are not captured by $g(t)$. An example of an appropriate specification for $g(t)$ is given in Appendix A. The integrated volatility becomes
$$
\sigma^{* 2}(0, t)=\int_{0}^{t} \sigma_{s}^{2} \mathrm{~d} s=\sigma^{2} \int_{0}^{t} \exp g(s) \mathrm{d} s
$$
The actual volatility can be analytically derived from (8) or it can be approximated by
$$
\sigma^{* 2}\left(t_{n}, t_{n+1}\right) \approx \sigma^{2} \sum_{s=l_{n}}^{t_{s+1}} \exp g(s)
$$






英国论文代写Viking Essay为您提供作业代写代考服务

ECON2004 COURSE NOTES :

A consistent estimator of $\Omega_{}$ can easily be obtained by a Bartlett kernel estimator, i.e.: $$ \hat{\Omega}{\text {予 }}=\hat{\Gamma}{0}+\sum_{k=1}^{K(T)}\left(1-\frac{k}{K(T)+1}\right)\left(\hat{\Gamma}{k}+\hat{\Gamma}{k}^{\prime}\right)
$$
where
$$
\hat{\Gamma}{k}=\frac{1}{T} \sum{t=k+1}^{T}\left[g_{t-k}(\hat{u})-\mu(\theta)\right]\left[g_{t}(\hat{u})-\mu(\theta)\right]^{\prime}
$$
with $\theta$ replaced by a consistent estimator $\tilde{\theta}{T}$ of $\theta$. The truncation parameter $K(T)=\tilde{c} T^{1 / 3}$ is allowed to grow with the sample size such that: $$ \lim {T \rightarrow \infty} \frac{K(T)}{T^{1 / 2}}=0
$$
A consistent estimator of $V_{}\left(\theta_{0}\right)$ is then given by
$$
\hat{V}{}=\left[P\left(\hat{\theta}{T}\right) \hat{\Omega}{}^{-1} P\left(\hat{\theta}{T}\right)^{\prime}\right]^{-1} .
$$











宏观经济学理论 Macroeconomic Theory ECON2003

0

这是一份nottingham诺丁汉大学ECON2003作业代写的成功案例

宏观经济学理论 Macroeconomic Theory ECON2003


Price levels and the exchange rate are related through purchasingpower parity
$$
s_{t}=p_{t}-p_{t}^{} . $$ To simplify the notation, call $$ f_{t} \equiv\left(m_{t}-m_{t}^{}\right)-\phi\left(y_{t}-y_{t}^{*}\right)
$$
the economic fundamentals. Now substitute to get
$$
s_{t}=f_{t}+\lambda\left(\mathrm{E}{t} s{t+1}-s_{t}\right)
$$
and solving for $s_{t}$ gives
$$
s_{t}=\gamma f_{t}+\psi \mathrm{E}{t} s{t+1}
$$
where
$$
\begin{aligned}
\gamma & \equiv 1 /(1+\lambda) \
\psi & \equiv \lambda \gamma=\lambda /(1+\lambda)
\end{aligned}
$$






英国论文代写Viking Essay为您提供作业代写代考服务

ECON2003COURSE NOTES :

Let the Euler equation for a domestic investor that speculates in forward foreign exchange be
$$
F_{t}=\frac{\mathrm{E}{t}\left[u^{\prime}\left(c{t+1}\right)\left(S_{t+1} / P_{t+1}\right)\right]}{\mathrm{E}{t}\left[u^{\prime}\left(c{t}\right) / P_{t+1}\right]}
$$
where $u^{\prime}(c)$ is marginal utility of real consumption $c$ and $P$ is the domestic price level. From the foreign perspective, the Euler equation is
$$
\frac{1}{F_{t}}=\frac{\mathrm{E}{t}\left[u^{\prime}\left(c{t+1}^{} /\left(S_{t+1} P_{t+1}^{}\right)\right]\right.}{\mathrm{E}{t}\left[u^{\prime}\left(c{t}^{}\right) / P_{t+1}^{}\right]}
$$
where $c^{}$ is foreign consumption and $P^{}$ is the foreign price level. Suppose further that both domestic and foreign agents are risk neutral. Show that Siegel’s paradox does not pose a problem now that payoffs are stated in real terms.











经济学入门 Introduction to Economics ECON1050

0

这是一份nottingham诺丁汉大学ECON1050作业代写的成功案例

经济学入门 Introduction to Economics ECON1050


Suppose that there exist two distinct points $x_{0}$ and $x_{1}$ of $E$ such that
$$
f\left(x_{1}\right)-f\left(x_{0}\right)=\nabla f\left(x_{0}\right)\left(x_{1}-x_{0}\right) .
$$
Then, by hypothesis,
$$
f(x(\lambda))>\lambda f\left(x_{0}\right)+(1-\lambda) f\left(x_{1}\right) \text { for all } \lambda \in(0,1),
$$
where $\boldsymbol{x}(\lambda)=\lambda x_{0}+(1-\lambda) x_{1}$.
From the above two expressions it follows that
$$
f(x(\lambda))-f\left(x_{0}\right)>(1-\lambda) \nabla f\left(x_{0}\right)\left(x_{1}-x_{0}\right) .
$$
On the other hand, in view of the convexity of $E, \boldsymbol{x}(\lambda)$ is in $E$ for all $\lambda \in(0,1)$. Therefore again,
$$
f(x(\lambda))-f\left(x_{0}\right) \leqq \nabla f\left(x_{0}\right)\left(x(\lambda)-x_{0}\right)=(1-\lambda) \nabla f\left(x_{0}\right)\left(x_{1}-x_{0}\right),
$$
contradicting the inequality established earlier.






英国论文代写Viking Essay为您提供作业代写代考服务

ECON1050 COURSE NOTES :

Let $\boldsymbol{x}$ be any feasible vector. Then $g_{i}(\boldsymbol{x}) \geqq 0=g_{i}\left(\boldsymbol{x}{0}\right)$ for any $i \in I{0}$. Hence,
$$
\nabla_{g_{i}}\left(x_{0}\right) \cdot\left(x-x_{0}\right) \geqq 0 \quad \text { for any } i \in I_{0} \text { and any } x \in F \text {. }
$$
Multiplying both sides of $(58)$ by $\left(\boldsymbol{x}-\boldsymbol{x}{0}\right)$, and applying (64) and (65), we obtain $$ \nabla f\left(\boldsymbol{x}{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}{0}\right)=-\sum{i \in I_{0}} u_{i 0} \cdot \nabla g_{i}\left(\boldsymbol{x}{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}{0}\right) \leqq 0
$$
Therefore,
$$
\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right) \leqq 0 \quad \text { for every } \boldsymbol{x} \in F
$$
4 Nonlinear Programming
59
Since $f(\boldsymbol{x})$ is pseudoconcave at $\boldsymbol{x}{0},(66)$ implies that $$ f\left(\boldsymbol{x}{0}\right) \geqq f(\boldsymbol{x}) \text { for every } \boldsymbol{x} \in F,
$$
which establishes the optimality of $x_{0}$.











量化方法 Quantitative Methods ECON1047

0

这是一份nottingham诺丁汉大学ECON1047作业代写的成功案例

量化方法 Quantitative Methods ECON1047


Up to this point we have been dealing with the standard Black-Scholes equation, which is
$$
\frac{\partial f}{\partial t}+(r-q) S \frac{\partial f}{\partial S}+\frac{\sigma^{2} S^{2}}{2} \frac{\partial^{2} f}{\partial S^{2}}=r f
$$
However, if we introduce the change of variable $Z=\log S$, we obtain the following equation:
$$
\frac{\partial f}{\partial t}+b \frac{\partial f}{\partial Z}+\frac{\sigma^{2}}{2} \frac{\partial^{2} f}{\partial Z^{2}}=r f
$$
where $b=r-q-\left(\sigma^{2} / 2\right)$. This has beneficial numerical properties since it does not contain the original Black-Scholes terms in $S$ and $S^{2}$.






英国论文代写Viking Essay为您提供作业代写代考服务

ECON1047 COURSE NOTES :

$$
S_{1}^{1}=115, \quad S_{1}^{2}=60, \quad \text { and } \quad S_{1}^{3}=114
$$
and for the second time step
$$
S_{2}^{1}=116, \quad S_{2}^{2}=90, \quad S_{2}^{3}=149, \ldots, \quad S_{2}^{7}=102, \quad S_{2}^{8}=88, \quad S_{2}^{9}=80
$$
The $k$ th asset price at the $i$ th time step, $S_{i}^{k}$ then generates the following asset prices at the $(i+1)$ th time step:
$$
\frac{S_{i+1}^{(k-1) b+j}}{S_{i}^{k}}=d S^{j}, \quad j=1, \ldots, b, \quad k=1, \ldots, b^{i}
$$
where $d S^{j}$ is, as before, a random variate from a given distribution. When $S_{i}$ follows GBM we therefore have











数学经济学和统计学方法 Mathematical Econ&Stat Methods ECON1046

0

这是一份nottingham诺丁汉大学ECON1046作业代写的成功案例

数学经济学和统计学方法 Mathematical Econ&Stat Methods ECON1046


Let $\lambda_{1}$ be in $(0, \delta)$. Then, resorting to Taylor’s Theorem, ${ }^{5}$ there exists a $\theta \in(0,1)$ such that
$$
g_{x(t)}\left(\lambda_{1}\right)=\frac{\lambda_{1}^{2}}{2} g_{x(t)}^{\prime \prime}\left(\theta \lambda_{1}\right)>0=g_{x(t)}(0) .
$$
This, however, contradicts our earlier observation that $g_{x}(\lambda)$ attains its maximum at $\lambda=0$ for all $\boldsymbol{x}{0}$ and $\boldsymbol{x}$ of $E$. (6) (Sufficiency). Let $\boldsymbol{x}{0}, \boldsymbol{x}$ and $g_{\boldsymbol{x}}(\lambda)$ be as in the proof of necessity.
Then, by hypothesis,
$$
g_{x}^{\prime \prime}(\lambda) \leqq 0 \text { for all } x_{0}, x \in E \text {, and for all } \lambda \in[0,1] .
$$
This, together with the fact that $g_{x}^{\prime}(0)=0$ for any $\boldsymbol{x}{0}$ and $x$ of $E$, implies that $$ g{x}^{\prime}(\lambda) \leqq 0 \text { for all } x_{0}, x \in E \text {, and for all } \lambda \in[0,1] .
$$
Since, by definition, $g_{x}(0)=0$ for all $x_{0}$ and $x$ of $E$, we can similarly assert that $g_{x}(\lambda) \leqq 0$ for all $x_{0}, x \in E$ and for all $\lambda \in[0,1] .$






英国论文代写Viking Essay为您提供作业代写代考服务

ECON1046 COURSE NOTES :

If the individual series have a stochastic trend, we can explore for shared stochastic trends between the series. In particular, if the stochastic trend of $x_{t}$ is shared with the $y_{t}$ series (i.e., $\tau_{x t}$ is linearly related to $\tau_{y t}$ ), then we have the following structure
$$
\begin{aligned}
&y_{t}=\tau_{y t}+c_{y t}+\epsilon_{y t} \
&x_{t}=\alpha \tau_{y t}+c_{x t}+\epsilon_{x t}
\end{aligned}
$$
where $\alpha$ is the factor of proportionality between the two trends. In this case there is a unique coefficient $\lambda$, such that the following linear combination of $y_{t}$ and $x_{t}$
$$
z_{t}=y_{t}-\lambda x_{t}
$$
is a stationary series – see Engle and Granger (1987). In fact, if there is a shared stochastic trend, the linear combination $z_{t}$ can be written as
$$
\begin{aligned}
z_{t} &=\tau_{y t}+c_{y t}+\epsilon_{y t}-\lambda\left(\alpha \tau_{y t}+c_{x t}+\epsilon_{x t}\right) \
&=\tau_{y t}-\lambda \alpha \tau_{y t}+c_{y t}-\lambda c_{x t}+\epsilon_{y t}-\lambda \epsilon_{x t}
\end{aligned}
$$











量化经济学 Quantitative Economics ECON1045

0

这是一份nottingham诺丁汉大学ECON1045作业代写的成功案例

量化经济学 Quantitative Economics ECON1045


Finally, the maximized likelihood function is found from
$$
L_{\max }^{-2 T}=|\hat{Q}|=\left|S_{o o}\right| \prod_{i=1}^{r}\left(1-\hat{\lambda}{i}\right) $$ and the likelihood ratio test of the hypothesis $H{1}(r)$ is given by the trace test statistic
$$
-2 \log Q\left[H_{1}(r) \mid H_{o}\right]=-T \sum_{i=r+1}^{p} \log \left(1-\hat{\lambda}{i}\right) $$ An alternative test (called the maximum eigenvalue test, $\lambda{\max }$ ) is based on the comparison of $H_{1}(r-1)$ against $H_{1}(r)$ :
$$
-2 \log Q\left[H_{1}(r-1) \mid H_{1}(r)\right]=-T \log \left(1-\hat{\lambda}_{r+1}\right)
$$





英国论文代写Viking Essay为您提供作业代写代考服务

ECON1045 COURSE NOTES :

If the individual series have a stochastic trend, we can explore for shared stochastic trends between the series. In particular, if the stochastic trend of $x_{t}$ is shared with the $y_{t}$ series (i.e., $\tau_{x t}$ is linearly related to $\tau_{y t}$ ), then we have the following structure
$$
\begin{aligned}
&y_{t}=\tau_{y t}+c_{y t}+\epsilon_{y t} \
&x_{t}=\alpha \tau_{y t}+c_{x t}+\epsilon_{x t}
\end{aligned}
$$
where $\alpha$ is the factor of proportionality between the two trends. In this case there is a unique coefficient $\lambda$, such that the following linear combination of $y_{t}$ and $x_{t}$
$$
z_{t}=y_{t}-\lambda x_{t}
$$
is a stationary series – see Engle and Granger (1987). In fact, if there is a shared stochastic trend, the linear combination $z_{t}$ can be written as
$$
\begin{aligned}
z_{t} &=\tau_{y t}+c_{y t}+\epsilon_{y t}-\lambda\left(\alpha \tau_{y t}+c_{x t}+\epsilon_{x t}\right) \
&=\tau_{y t}-\lambda \alpha \tau_{y t}+c_{y t}-\lambda c_{x t}+\epsilon_{y t}-\lambda \epsilon_{x t}
\end{aligned}
$$











数学经济学和计量经济学 Maths Economics & Econometrics ECON1044

0

这是一份nottingham诺丁汉大学ECON1044作业代写的成功案例

数学经济学和计量经济学 Maths Economics & Econometrics ECON1044


For ease of exposition, we assume that there are no time-specific effects, that is, $\lambda_{t}=0$ for all $t$ and $u_{i t}$ are independently, identically distributed (i.i.d) across $i$ and over $t$. Stack an individual’s $T$ time series observations of $\left(y_{i t}, x_{i t}^{\prime}\right)$ into a vector and a matrix, may alternatively be written as
$$
{\underset{\sim}{i}}{i}=X{i} \underset{\sim}{\beta}+\underset{\sim}{e} \alpha_{i}+{\underset{\sim}{i}}{i}, \quad i=1, \ldots, N, $$ vector of 1’s. Let $Q$ be a $T \times T$ matrix satisfying the condition that $Q e=0$. Pre-multiplying by $Q$ yields $$ Q y{\sim i}=Q X_{i} \beta \underset{\sim}{\beta}+Q u_{i}, \quad i=1, \ldots, N .
$$





英国论文代写Viking Essay为您提供作业代写代考服务

ECON1044 COURSE NOTES :

$$
y_{i t}^{}={\underset{\sim}{\beta}}^{\prime} x_{i t}+\alpha_{i}+u_{i t}, $$ and $$ y_{i t}= \begin{cases}1, & \text { if } y_{i t}^{}>0 \ 0, & \text { if } y_{i t}^{*} \leq 0\end{cases}
$$
where $u_{i t}$ is independently, identically distributed with density function $f\left(u_{i t}\right)$. Let
$$
y_{i t}=E\left(y_{i t} \mid x_{i t}, \alpha_{i}\right)+\varepsilon_{i t},
$$
then
Since $\alpha_{i}$ affects $E\left(y_{i t} \mid x_{i t}, \alpha_{i}\right)$ nonlinearly, $\alpha_{i}$ remains after taking successive difference of $y_{i t}$
The likelihood function conditional on $x_{i}$ and $\alpha_{i}$ takes the form,
$$
\prod_{i=1}^{N} \prod_{t=1}^{T}\left[F\left(-\beta_{\sim}^{\prime} x_{i t}-\alpha_{i}\right)\right]^{1-y_{i t}}\left[1-F\left(-\beta_{\sim}^{\prime} x_{i t}-\alpha_{i}\right)\right]^{y_{i t}} \text {. }
$$











经济学基础 Foundations of Economics ECON1043

0

这是一份nottingham诺丁汉大学ECON1043作业代写的成功案例

经济学基础 Foundations of Economics ECON1043


$\mathbf{x} \geq \mathbf{y} \Leftrightarrow x_{i} \geq y_{i} \quad$ for all $i=1,2, \ldots, n$
Readers of the literature need to be alert to what various authors mean by $\mathbf{x}>\mathbf{y}$ in $\mathfrak{R}^{n}$. We adopt the convention that
$\mathbf{x}>\mathbf{y} \Leftrightarrow x_{i}>y_{i} \quad$ for all $i=1,2, \ldots, n$
using $\mathbf{x} \gtreqless \mathbf{y}$ for the possibility the $\mathbf{x}$ and $\mathbf{y}$ are equal in some components $\mathbf{x} \gtreqless \mathbf{y} \Leftrightarrow x_{i} \geq y_{i} \quad$ for all $i=1,2, \ldots, n$ and $\mathbf{x} \neq \mathbf{y}$

Some authors use $>$ where we use $\gtreqless$, and use $\gg$ in place of $>$. Other conventions are also found.

The natural order is not the only way in which to order the product of weakly ordered sets. An example of a complete order on a product space $X=X_{1} \times X_{2} \times \cdots \times X_{n}$ is the lexicographic order, in which $\mathbf{x} \succ^{L} \mathbf{y}$ if $x_{k} \succ y_{k}$ in the first component in which they differ. That is,
$\mathbf{x} \succ^{L} \mathbf{y} \Leftrightarrow x_{k} \succ y_{k} \quad$ and $\quad x_{i}=y_{i} \quad$ for all $i=1,2, \ldots, k-1$





英国论文代写Viking Essay为您提供作业代写代考服务

ECON1043 COURSE NOTES :

Let $S$ be a nonempty subset of a linear space and let $m=\operatorname{dim}$ cone $S$. For every $\mathbf{x} \in$ cone $S$, there exist $\mathbf{x}{1}, \mathbf{x}{2}, \ldots, \mathbf{x}{n} \in S$ and $\alpha{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathfrak{R}{+}$ such that $$ \mathbf{x}=\alpha{1} \mathbf{x}{1}+\alpha{2} \mathbf{x}{2}+\cdots+\alpha{n} \mathbf{x}_{n}
$$

  1. If $n>m=$ dim cone $S$, show that the elements $\mathbf{x}{1}, \mathbf{x}{2}, \ldots, \mathbf{x}{n} \in S$ are linearly dependent and therefore there exist numbers $\beta{1}, \beta_{2}, \ldots, \beta_{n}$, not all zero, such that
    $$
    \beta_{1} \mathbf{x}{1}+\beta{2} \mathbf{x}{2}+\cdots+\beta{n} \mathbf{x}_{n}=\mathbf{0}
    $$
  2. Show that for any number $t, \mathbf{x}$ can be represented as
    $$
    \mathbf{x}=\sum_{i=1}^{n}\left(\alpha_{i}-t \beta_{i}\right) \mathbf{x}_{i}
    $$











经济融合 Current Economic Issues ECON1016

0

这是一份nottingham诺丁汉大学ECON1016作业代写的成功案例

经济融合 Current Economic Issues ECON1016


As part of this relatively new line of enquiry, a recent study by Guitierrez et al. (2007) attempts to supplement the analysis of labour intensity and sectoral growth patterns with a more nuanced assessment of how demographic shifts in general, and labour supply and labour mobility in particular, may be important in understanding household poverty changes in a society. The authors therefore, in addition to estimating how sectoral productivity and employment growth may impact on poverty shifts across countries, also include two additional labour supply variables: the share of population of working age who report being employed $(e)$ and the ratio of the working age population to the total population $(a)$, which the authors see as a proxy for the dependency ratio (Guitierrez et al., 2007). Hence, their modelling strategy revolves around the following conception, linking labour market activity to welfare outcomes:
$$
\frac{\Delta P}{P}=\beta_{0}+\beta_{1} \bar{e}{i j}+\beta{2} \bar{w}{i j}+\beta{3} \bar{a}_{i}+\epsilon
$$





英国论文代写Viking Essay为您提供作业代写代考服务

ECON1016 COURSE NOTES :

However, it is entirely possible to utilize the architecture of the GIC curve approach to glean a more accurate representation of how the labour market, through employment creation, may (or may not) have generated pro-poor growth within an economy. If one thus utilizes the functional form of the GIC curve, which is represented as (Ravallion, 2004), then:
$$
g_{\mathrm{t}}(p) \equiv \frac{d \log y_{t}(p)}{d t} \text { for } 0 \leq p \leq 1
$$
where the growth rate $g$ of each percentile $p$ in the distribution is traced out across the variable under consideration, $y$. It is therefore easy to see how distinct and relevant labour market categories can be supplanted onto the GIC approach. In effect, we would treat the distribution $y$ as being represented by our labour market category of interest. In so doing, we are immediately able to interrogate and understand the role of the labour market, and labour market returns in particular, in the growth process.










经济融合 Economic Integration ECON1014

0

这是一份nottingham诺丁汉大学ECON1014作业代写的成功案例

经济融合 Economic Integration ECON1014


$$
\pi_{\mathrm{A}}(i)=p_{\mathrm{AA}}(i) q_{\mathrm{AA}}(i)+\left[p_{\mathrm{AB}}(i)-t\right] q_{\mathrm{AB}}(i)-f w_{\mathrm{A}}
$$
where $w_{\mathrm{A}}$ is the region A wage of the skilled workers.
Using the demand functions (8.2) and differentiating $\pi_{\mathrm{A}}(i)$ with respect to $p_{\mathrm{AA}}(i)$ and $p_{\mathrm{AB}}(i)$, we obtain two linear equations with two unknowns whose solution is given by
$$
\begin{aligned}
&p_{\mathrm{AA}}^{}\left(P_{\mathrm{A}}\right)=\frac{a+c P_{\mathrm{A}}}{2(b+c n)}, \ &p_{\mathrm{AB}}^{}\left(P_{\mathrm{B}}\right)=\frac{a+c P_{\mathrm{B}}}{2(b+c n)}+\frac{t}{2} .
\end{aligned}
$$
Hence, firms established in the same region have the same domestic and delivered prices. Using the price index definition leads to
$$
P_{\mathrm{A}}=n_{\mathrm{A}} p_{\mathrm{AA}}^{}\left(P_{\mathrm{A}}\right)+n_{\mathrm{B}} p_{\mathrm{BA}}^{}\left(P_{\mathrm{A}}\right)
$$


英国论文代写Viking Essay为您提供作业代写代考服务

ECON1014 COURSE NOTES :

$$
\begin{aligned}
\Delta V(\lambda) & \equiv V_{\mathrm{A}}(\lambda)-V_{\mathrm{B}}(\lambda)=C_{\mathrm{A}}^{}(\lambda)-C_{\mathrm{B}}^{}(\lambda)+w_{\mathrm{A}}^{}(\lambda)-w_{\mathrm{B}}^{}(\lambda) \
&=K t\left(t^{}-t\right)\left(\lambda-\frac{1}{2}\right) \end{aligned} $$ where $$ K \equiv\left[2 b f\left(3 b f+3 c L+c L_{\mathrm{a}}\right)+c^{2} L\left(L_{\mathrm{a}}+L\right)\right] \frac{L(b f+c L)}{2 f^{2}(2 b f+c L)^{2}}>0 $$ is a positive constant and $$ t^{} \equiv \frac{4 a f(3 b f+2 c L)}{2 b f\left(3 b f+3 c L+c L_{\mathrm{a}}\right)+c^{2} L\left(L_{\mathrm{a}}+L\right)}>0 .
$$