数值分析 Numerical Analysis MATH260001

0

这是一份leeds利兹大学MATH260001作业代写的成功案例

数值分析 Numerical Analysis MATH260001
问题 1.

We shall verify the three axioms for a norm. First, if $A \neq 0$, then $A$ has at least one nonzero column; say, $A^{(j)} \neq 0$. Consider the vector in which 1 is the $j$ th component – that is, $x=(0, \ldots, 0,1,0, \ldots, 0)^{T}$. Obviously, $x \neq 0$ and the vector $v=x /|x|$ is of norm 1 . Hence by the definition of $|A|$,
$$
|A| \geq|A v|=\frac{|A x|}{|x|}=\frac{\left|A^{(\jmath)}\right|}{|x|}>0
$$

证明 .

Next, the vector norm, we have
$$
|\lambda A|=\sup {|\lambda A u|:|u|=1}=|\lambda| \sup {|A u|:|u|=1}=|\lambda||A|
$$
For the triangle inequality, we use the analogous property of the vector norm and Problem 4 to write
$$
|A+B|=\sup {|(A+B) u|:|u|=1}
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH260001 COURSE NOTES :

If $A$ is an $n \times n$ matrix such that $|A|<1$, then $I-A$ is invertible, and
$$
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k}
$$
First, we shall show that $I-A$ is invertible. If it is not invertible then it is singular, and there exists a vector $x$ satisfying $|x|=1$ and $(I-A) x=0$. From this we have
$$
1=|x|=|A x| \leqq|A||x|=|A|
$$
which contradicts the hypothesis that $|A|<1$.








数值分析|Numerical Analysis代写 MT3802

0

这是一份andrews圣安德鲁斯大学 MT3508作业代写的成功案例

数值分析|Numerical Analysis代写 MT3802
问题 1.

Suppose that for a matrix $A \in \mathbb{R}^{n \times n}$,
$$
\sum_{i=1}^{n}\left|a_{i j}\right| \leq C, \quad j=1,2, \ldots, n
$$
Show that, for any vector $\boldsymbol{x} \in \mathbb{R}^{n}$,
$$
\sum_{i=1}^{n}\left|(A \boldsymbol{x}){i}\right| \leq C|\boldsymbol{x}|{1}
$$


证明 .

Find a nonzero vector $\boldsymbol{x}$ for which equality can be achieved, and deduce that
$$
|A|_{1}=\max {j=1}^{n} \sum{i=1}^{n}\left|a_{i j}\right| .
$$
(i) Show that, for any vector $v=\left(v_{1}, \ldots, v_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$, $|v|_{\infty} \leq|v|_{2}$ and $|v|_{2}^{2} \leq|v|_{1}|v|_{\infty}$.



英国论文代写Viking Essay为您提供作业代写代考服务

MT3802 COURSE NOTES :

Now suppose that $A \in \mathbb{R}^{n \times n}$ with $|A|<1$. Show that
$$
(I-A)^{-1}=I+A(I-A)^{-1} \text {, }
$$
and hence that
$$
\left|(I-A)^{-1}\right| \leq 1+|A|\left|(I-A)^{-1}\right| .
$$
Deduce that
$$
\left|(I-A)^{-1}\right| \leq \frac{1}{1-|A|} .
$$