高级数学 Adv. fin Mathematics MATH4061

0

这是一份nottingham诺丁汉大学MATH4061作业代写的成功案例

高级数学 Adv. fin Mathematics MATH4061

Let $D_{n}:=E\left(X_{n} \mid \mathcal{B}{n-1}\right)-X{n-1}$ for $n=-1,-2, \ldots$. By assumption, $D_{n} \geq 0$ a.s. Now $\sum_{n \leq-1} E D_{n}=\sum_{n \leq-1} E\left(X_{n}-X_{n-1}\right)=E X_{-1}-K$; note that $E X_{n} \downarrow K$ as $n \rightarrow-\infty$. Since the sum is finite, the series $\sum D_{n}$ converges by monotone convergence to an integrable function.

Let $Z_{n}:=\sum_{k \leq n} D_{k}$ for each $n$. Then $Z_{n}$ is nondecreasing as $n$ increases almost surely, and $Z_{n} \downarrow 0$ a.s. as $n \rightarrow-\infty$. Let $Y_{n}:=X_{n}-Z_{n}$. To show that $Y_{n}$ is a (reversed) martingale, we have
$$
\begin{aligned}
E\left(Y_{n} \mid \mathcal{B}{n-1}\right) &=E\left(X{n}-Z_{n} \mid \mathcal{B}{n-1}\right)=D{n}+X_{n-1}-\sum_{k \leq n} D_{k} \
&=X_{n-1}-\sum_{k<n} D_{k}=X_{n-1}-Z_{n-1}=Y_{n-1}
\end{aligned}
$$
proving the decomposition as desired. Now $Z_{n}$ converges in $\mathcal{L}^{1}$ by monotone or dominated convergence, and $Y_{n}$ converges a.s. and in $\mathcal{L}^{1}$ by Theorem 10.6.1, so $X_{n}$ converges likewise.

英国论文代写Viking Essay为您提供作业代写代考服务

MATH4061 COURSE NOTES :

If $M, P$, and $Q$ are laws on $S, \rho(M, P)<x$ and $\rho(P, Q)<y$, then for any Borel set $A$,
$$
M(A) \leq P\left(A^{x}\right)+x \leq Q\left(\left(A^{x}\right)^{y}\right)+y+x \leq Q\left(A^{x+y}\right)+x+y,
$$
so $\rho(M, Q) \leq x+y$. Letting $x \downarrow \rho(M, P)$ and $y \downarrow \rho(P, Q)$ gives $\rho(M, Q) \leq$ $\rho(M, P)+\rho(P, Q)$.

The metric $\rho$ is called the Prohorov metric, or sometimes the LévyProhorov metric. Now for any laws $P$ and $Q$ on $S$, let $\int f d(P-Q):=$ $\int f d P-\int f d Q$ and








高级数学 Advanced Mathematics ECON10071

0

这是一份manchester曼切斯特大学ECON10061作业代写的成功案例

高级数学 Advanced Mathematics ECON10071
问题 1.

Let $D_{n}:=A \backslash E_{n} \downarrow D:=A \backslash E$. We want to show $v\left(D_{n}\right) \downarrow v(D)$. Clearly $v\left(D_{n}\right) \downarrow \alpha$ for some $\alpha \geq v(D)$. If $\alpha>v(D)$, take $0<\varepsilon<\alpha-v(D)$. For each $n=1,2, \ldots$, take a compact $C_{n} \subset D_{n}$ with $\mu^{*}\left(C_{n}\right)>v\left(D_{n}\right)-\varepsilon / 3^{n}$. Let $F_{n}:=\bigcap_{1 \leq j \leq n} C_{j}$. Then for each $n$,
$$
C_{n} \subset F_{n} \cup \bigcup_{1 \leqq i \leq n} C_{n} \backslash C_{i} .
$$

证明 .

Since all compact sets are in the algebra $\mathcal{M}(v)$,
$$
v\left(C_{n}\right) \leq v\left(F_{n}\right)+\sum_{1 \leq i \leq n} v\left(C_{n} \backslash C_{i}\right) .
$$
Since $C_{n} \subset D_{n} \subset D_{i}$ for $i \leq n$
$$
v\left(C_{n}\right) \leq v\left(F_{n}\right)+\sum_{1 \leq i \leq n} \varepsilon / 3^{i}
$$


英国论文代写Viking Essay为您提供作业代写代考服务

ECON10071 COURSE NOTES :

$$
\int_{-\pi}^{\pi}\left|\left(e^{i(n+1) x}-e^{-i n x}\right) /\left(e^{i x}-1\right)\right| d x \rightarrow \infty
$$
or equivalently, dividing numerator and denominator by $e^{i x / 2}$,
$$
\int_{0}^{\pi}\left|\sin \left(\left(n+\frac{1}{2}\right) x\right)\right| / \sin \left(\frac{x}{2}\right) d x \rightarrow \infty
$$
Now $\sin (n x+x / 2)=\sin (n x) \cos (x / 2)+\cos (n x) \sin (x / 2)$. For $\theta:=x / 2$, we have $0 \leq \theta \leq \pi / 2$, so $\cos ^{2} \theta \leq \cos \theta, 1-2 \cos \theta+\cos ^{2} \theta \leq \sin ^{2} \theta$, and $|1-\cos \theta| \leq \sin \theta$. So it will be enough to show that
$$
\int_{0}^{\pi}|\sin (n x)| / \sin \left(\frac{x}{2}\right) d x \rightarrow \infty
$$