代数、解析几何和三角学|Algebra, Analytic Geometry and Trigonometry代写 MATH 104

0

这是一份umass麻省大学 MATH 103作业代写的成功案例

代数、解析几何和三角学|Algebra, Analytic Geometry and Trigonometry代写 MATH 104
问题 1.

$\operatorname{proj}{o x} O P=\operatorname{proj}{o x} O A+\operatorname{proj}_{o x} A P .$
By the first projection theorem, this becomes:
$$
O P \cos (\alpha+\beta)=O A \cos \alpha+A P \cos \left(90^{\circ}+\alpha\right) .
$$
Or, since
$$
\cos \left(90^{\circ}+\alpha\right)=-\sin \alpha,
$$

证明 .

we have:
$O P \cos (\alpha+\beta)=O A \cos \alpha-A P \sin \alpha$
Dividing by $O P$, we have:
$$
\cos (\alpha+\beta)=\cos \alpha\left(\frac{O A}{O P}\right)-\sin \alpha\left(\frac{A P}{O P}\right)
$$
Or, since
$$
\frac{O A}{O P}=\cos \beta
$$
and
$$
\frac{A P}{O P}=\sin \beta
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH104 COURSE NOTES :

Hence we have:
$$
\cos \alpha=1-2 \sin ^{2} \frac{\alpha}{2}
$$
or:
$$
2 \sin ^{2} \frac{\alpha}{2}=1-\cos \alpha
$$
or:
$$
\sin ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{2} .
$$
Or, finally,
$$
\sin \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{2}}
$$




预微积分、代数、函数和图形|Precalculus, Algebra, Functions and Graphs代写 MATH 101

0

这是一份umass麻省大学 MATH 101作业代写的成功案例

预微积分、代数、函数和图形|Precalculus, Algebra, Functions and Graphs代写 MATH 101
问题 1.

$$
\beta: A \times B \longrightarrow \operatorname{Hom}{T}\left(C, A \otimes{R}\left(B \otimes_{S} C\right)\right)
$$
is a bihomomorphism of bimodules, and there is a unique homomorphism
$$
\bar{\beta}: A \otimes_{R} B \longrightarrow \operatorname{Hom}{T}\left(C, A \otimes{R}\left(B \otimes_{S} C\right)\right)
$$

证明 .

of bimodules such that $\bar{\beta}(a \otimes b)=\beta(a, b)$ for all $a, b$. By $5.6,(u, c) \longmapsto \bar{\beta}(u)(c)$ is a bihomomorphism of $\left(A \otimes_{R} B\right) \times C$ into $A \otimes_{R}\left(B \otimes_{S} C\right)$. Hence there is a bimodule homomorphism
$$
\theta:\left(A \otimes_{R} B\right) \otimes_{S} C \longrightarrow A \otimes_{R}\left(B \otimes_{S} C\right)
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH101 COURSE NOTES :

Proof. The set Bihom $(A \times B, C)$ of all bihomomorphisms of $A \times B$ into $C$ is an abelian group under pointwise addition. The universal property of the tensor map $\tau:(a, b) \longmapsto a \otimes b$ provides a bijection $\varphi \longmapsto \varphi \circ \tau \circ \operatorname{Hom}{\mathbb{Z}}\left(A \otimes{R} B, C\right)$ onto Bihom $(A \times B, C)$, which preserves pointwise addition. Proposition $5.2$ provides two more bijections:
$\operatorname{Bihom}(A \times B, C) \longrightarrow \operatorname{Hom}{R}\left(A, \operatorname{Hom}{Z}(B, C)\right)$,
$\operatorname{Bihom}(A \times B, C) \longrightarrow \operatorname{Hom}{R}\left(B, \operatorname{Hom}{\mathcal{Z}}(A, C)\right)$,