数学建模的方法 Methods of Mathematical Modelling MA146-10/MA144-10

0

这是一份warwick华威大学MA146-10/MA144-10的成功案例

数学建模的方法 Methods of Mathematical Modelling MA146-10/MA144-10


where $\sigma_{0}$ is the surface tension and $|\mathbf{v}|$ is the absolute value of the fluid velocity. The convective heat flux then becomes:
$$
\dot{Q}{\text {can }}=\pi d{o} \kappa \mathrm{Nu}\left(T-T_{o}\right),
$$
where, $T$ and $T_{0}$ are temperatures of the continuous and dispersed phases respectively and the Nusselt number is given by:
$$
\mathrm{Nu}=2+0.6 \operatorname{Re}^{0.5} \operatorname{Pr}^{0.33}
$$
In the previous equation the Prandtl number is defined as:
$$
\operatorname{Pr}=\frac{\mu C_{p}}{\kappa}
$$
Reynolds number is:
$$
\operatorname{Re}=\frac{\rho\left|\mathbf{v}{o}-\mathbf{v}\right| d{o}}{\mu}
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MA140-10/MA152-15 COURSE NOTES :

$$
W(s)=1+\sum_{i=1}^{l} b^{i} f^{j}(s)
$$
where $i$ is the number of variables which influence the adaptation, $b^{t}$ are constants and $f(s)$ are adaptation functions or their first derivatives. The adaptation function, which appears in the same equation, is integrated along the length of the grid as:
$$
F^{l}(s)=\int_{0}^{s} f^{l}(s) d s
$$
together give:
$$
\xi(s)=\frac{s+\sum_{i=1}^{l} b^{i} F^{l}(s)}{S_{\max }+\sum_{i=1}^{l} b^{i} F^{i}\left(S_{\max }\right)} .
$$