数学 Maths 2 PHYS130001/PHYS238001

0

这是一份leeds利兹大学PHYS130001/PHYS238001作业代写的成功案例

震动与热物理 Vibrations & Thermal Phys (JH) PHYS128001

Let $b_{\alpha \beta \mid \sigma}:=\partial_{\sigma} b_{\alpha \beta}-\Gamma_{\alpha \sigma}^{\tau} b_{\tau \beta}-\Gamma_{\beta \sigma}^{\tau} b_{\alpha \tau}$ denote the first-order covariant derivatives of the curvature tensor, defined here by means of its covariant components. Show that these covariant derivatives satisfy the Codazzi-Mainardi identities
$$
b_{\alpha \beta \mid \sigma}=b_{\alpha \sigma \mid \beta}
$$
which are themselves equivalent to the relations (Thm. 2.8-1)
$$
\partial_{\sigma} b_{\alpha \beta}-\partial_{\beta} b_{\alpha \sigma}+\Gamma_{\alpha \beta}^{\tau} b_{\tau \sigma}-\Gamma_{\alpha \sigma}^{\tau} b_{\tau \beta}=0
$$
Hint: The proof is analogous to that given in for establishing the relations $\left.b_{\beta}^{\tau}\right|{\alpha}=\left.b{\alpha}^{\tau}\right|_{\beta}$.

英国论文代写Viking Essay为您提供作业代写代考服务

PPHYS130001/PHYS238001 COURSE NOTES :

$u_{i}^{\varepsilon}\left(x^{\varepsilon}\right)=u_{i}(\varepsilon)(x)$ for all $x^{\varepsilon}=\pi^{\varepsilon} x \in \bar{\Omega}^{\varepsilon}$,
where $\pi^{c}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, \varepsilon x_{3}\right)$. We then assume that there exist constants $\lambda>0, \mu>0$ and functions $f^{i}$ independent of $\varepsilon$ such that
$$
\begin{gathered}
\lambda^{\varepsilon}=\lambda \text { and } \mu^{\varepsilon}=\mu, \
f^{i, \varepsilon}\left(x^{\varepsilon}\right)=\varepsilon^{p} f^{i}(x) \text { for all } x^{\varepsilon}=\pi^{e} x \in \Omega^{\varepsilon},
\end{gathered}
$$








数学 MATH MATHS2025_1/MATHS3016_1

0

这是一份GLA格拉斯哥大学MATHS2025_1/MATHS3016_1作业代写的成功案例

数学 MATH MATHS2025_1/MATHS3016_1

Let $f$ be a function from a nonempty open subset $E$ of $\mathbb{R}$ to $\mathbb{R}$. The function $f$ is said to be differentiable at $c \in E$ if
$$
\lim {x \rightarrow c} \frac{f(x)-f(c)}{x-c} $$ or, equivalently, $$ \lim {h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$
exists. This limit (if it exists) is called the derivative of $f$ at $c$. If the derivative of $f$ exists at every $c \in E$, then $f$ is said to be differentiable on $E$ (or just differentiable). The derivative of $f$ as a function from $E$ to $\mathbb{R}$ is denoted by
$$
f^{\prime} \text { or } \frac{d f}{d x}
$$
Note that the limit in Eq. (7.1) is understood as the limit of the function
$$
g(x)=\frac{f(x)-f(c)}{x-c}, \quad x \in E \backslash{c}
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATHS2025_1/MATHS3016_1COURSE NOTES :

From the definition of $f^{\prime}(c)$, it follows that for every $\varepsilon>0$, there exists $\delta>0$ such that $x \in E,|x-c|<\delta$, and $x \neq c$ imply
$$
\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<\varepsilon .
$$
Thus, for every $x \in E$ with $|x-c|<\delta$,
$$
|f(x)-\varphi(x)| \leq \varepsilon|x-c|,
$$
where $\varphi$ is the linear function defined by
$$
\varphi(x)=f(c)+f^{\prime}(c)(x-c), \quad x \in \mathbb{R}
$$