高级复杂系统|MATH3977 Complex Analysis (Advanced)代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3977的成功案例

高级复杂系统|MATH3977 Complex Analysis (Advanced)代写 Sydney代写


问题 1.

Let us define $r(x)$ by
$$
\sum_{p \leq x} \log p=x(1+r(x))
$$
so we have $r(x) \rightarrow 0$ for $x \rightarrow \infty$ by VII.4.4.
Trivially, the following holds:
$$
\sum_{p \leq x} \log p \leq \pi(x) \log x
$$
and hence
$$
\pi(x) \geq \frac{x}{\log x}(1+r(x))
$$

证明 .

$$
\pi(x) \leq \frac{x}{\log x}(1+r(x)) q^{-1}+x^{q} .
$$
This inequality can now be specified for a suitable value of $q$, namely for $q=1-$ $1 / \sqrt{\log x}(x \geq 2)$. Then we have
$$
\pi(x) \leq \frac{x}{\log x}(1+R(x))
$$
with
$$
R(x)=-1+(1+r(x))\left(1-\frac{1}{\sqrt{\log x}}\right)^{-1}+(\log x) x^{-1 / \sqrt{\log x}} .
$$
It obviously holds $R(x) \rightarrow 0$ for $x \rightarrow \infty$.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH3977 COURSE NOTES :


For $t \in \mathbb{R}$ we define
$$
\beta(t):=t-[t]-1 / 2 \quad([t]:=\max {n \in \mathbb{Z}, n \leq t})
$$
Then we have $\beta(t+1)=\beta(t)$ and $|\beta(t)| \leq \frac{1}{2}$.
The integral
$$
F(s):=\int_{1}^{\infty} t^{-s-1} \beta(t) d t
$$
converges absolutely for $R e(s)>0$, and represents in this right half-plane an analytic function $F$. For $\operatorname{Re}(s)>1$ it holds:
$$
\zeta(s)=\frac{1}{2}+\frac{1}{s-1}-s F(s)
$$


















高级拉格朗日和哈密尔顿动力学|MATH3977 Lagrangian and Hamiltonian Dynamics (Adv)代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3977的成功案例

高级拉格朗日和哈密尔顿动力学|MATH3977 Lagrangian and Hamiltonian Dynamics (Adv)代写 Sydney代写


问题 1.

We assumed we had a holonomic system and the $q$ ‘s were all independent, so this equation holds for arbitrary virtual displacements $\delta q_{j}$, and therefore
$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}{j}}-\frac{\partial T}{\partial q{j}}-Q_{j}=0
$$
Now let us restrict ourselves to forces given by a potential, with $\vec{F}{i}=$ $-\vec{\nabla}{i} U({\vec{r}}, t)$, or
$$
Q_{j}=-\sum_{i} \frac{\partial \vec{r}{i}}{\partial q{j}} \cdot \vec{\nabla}{i} U=-\left.\frac{\partial \tilde{U}({q}, t)}{\partial q{j}}\right|_{t}
$$

证明 .

Notice that $Q_{j}$ depends only on the value of $U$ on the constrained surface.
Also, $U$ is independent of the $\dot{q}{i}$ ‘s, so $$ \frac{d}{d t} \frac{\partial T}{\partial \dot{q}{j}}-\frac{\partial T}{\partial q_{j}}+\frac{\partial U}{\partial q_{j}}=0=\frac{d}{d t} \frac{\partial(T-U)}{\partial \dot{q}{j}}-\frac{\partial(T-U)}{\partial q{j}}
$$
or
$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}{j}}-\frac{\partial L}{\partial q{j}}=0
$$
This is Lagrange’s equation, which we have now derived in the more general context of constrained systems.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH3977 COURSE NOTES :


$$
\tilde{u}=\dot{i}=0 \quad \text { as } z \rightarrow \infty
$$
Hence
$$
\tilde{u}=C_{3} e^{-(1+i) z \delta_{E}}+C_{4} e^{-(1-i) z / \delta_{L}},
$$
while from (4.3.13)
$$
\tilde{v}=-i C_{3} e^{-(1+i) z^{\prime} \delta E}+i C_{4} e^{-(1-i) z / \delta_{E}} .
$$
On $z=0$,
$$
\begin{aligned}
&\tilde{v}=0 \
&\tilde{u}=-U
\end{aligned}
$$
so that
$$
C_{3}=C_{4}=-\frac{U}{2}
$$