数学分析 Mathematical Analysis  MA140-10/MA152-15 

0

这是一份warwick华威大学MA140-10/MA152-15的成功案例

数学分析 Mathematical Analysis  MA140-10/MA152-15 


Proof As is shown in linear algebra, the matrix $A$ that represents $T$ is a product of elementary matrices
$$
A=E_{1} \cdots E_{k} .
$$
Each elementary $2 \times 2$ matrix is one of the following types:
$$
\left[\begin{array}{ll}
\lambda & 0 \
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \
0 & \lambda
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
1 & \sigma \
0 & 1
\end{array}\right]
$$
where $\lambda>0$. The first three matrices represent isomorphisms whose effect on $I^{2}$ is obvious: $I^{2}$ is converted to the rectangles $\lambda I \times I, I \times \lambda I, I^{2}$. In each case, the area agrees with the magnitude of the determinant. The fourth isomorphism converts $I^{2}$ to the parallelogram$\Pi$ is Riemann measurable since its boundary is a zero set. By Fubini’s Theorem, we get
$$
|\Pi|=\int \chi_{\Pi}=\int_{0}^{1}\left[\int_{x=\sigma x}^{x=1+\sigma y} 1 d x\right] d y=1=\operatorname{det} E .
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MA140-10/MA152-15 COURSE NOTES :

$$
d x_{I}: \varphi \mapsto \int_{l^{k}} \frac{\partial \varphi_{I}}{\partial u} d u
$$
where this integral notation is shorthand for
$$
\int_{0}^{1} \ldots \int_{0}^{1} \frac{\partial\left(\varphi_{i_{1}}, \ldots, \varphi_{i_{k}}\right)}{\partial\left(u_{1}, \ldots, u_{k}\right)} d u_{1 \ldots} . d v_{k}
$$
If $f$ is a smooth function on $\mathbb{R}^{n}$ then $f d x_{l}$ is the functional
$$
f d x_{I}: \varphi \mapsto \int_{I^{k}} f(\varphi(u)) \frac{\partial \varphi_{I}}{\partial u} d u
$$










数学分析|Mathematical Analysis代写 MATH0048

0

这是一份ucl伦敦大学学院 math0048作业代写的成功案

数学分析|Mathematical Analysis代写 MATH0048
问题 1.

According to $5.6 .9$, for $|\lambda|>|T|$ there is an operator $(1-T / \lambda)^{-1}$ presenting the sum of the Neumann series; i.e.,
$$
R(T, \lambda)=\frac{1}{\lambda}\left(1-{ }^{T} / \lambda\right)^{-1}=\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{T^{k}}{\lambda^{k}}
$$


证明 .

It is clear that
$$
|R(T, \lambda)| \leq \frac{1}{|\lambda|} \cdot \frac{1}{1-|T | /| \lambda \mid} . \triangleright
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MATH0048 COURSE NOTES :

This entails sesquilinearity:
$$
\begin{aligned}
(y, x)=&(y, x){\mathbb{R}}-i(i y, x){\mathbb{R}}=(x, y){\mathbb{R}}-i(x, i y){\mathbb{R}} \
&=(x, y){\mathbb{R}}+i(i x, y){\mathbb{R}}=(x, y)^{*}
\end{aligned}
$$
since
$(x, i y){\mathbf{R}}=1 / 4\left(|x+i y|^{2}-|x-i y|^{2}\right)$ ${ }^{1}{ }^{1} / 4\left(|i||y-i x|^{2}-|-i||i x+y|^{2}\right)=-(i x, y){\mathbb{R}}$.