数学方法|MA40059 Mathematical methods 2代写

0

To stimul should be able to obtain solutions to certain important PDEs using a variety of techniques e.g. Green’s functions, separation of variables, and in cases interpret these in physical terms. They should also be familiar with important analytic properties of the solution.

这是一份Bath巴斯大学MA40059作业代写的成功案

数学方法|MA40059 Mathematical methods 2代写

$$
\begin{gathered}
Y(x, \epsilon)=y(x)=\epsilon \eta(x), \
Y^{\prime}(x, \epsilon)=y^{\prime}(x)+\epsilon \eta^{\prime}(x) .
\end{gathered}
$$
Then the meaning of $\delta y$ is
$$
\delta y=\left(\frac{\partial Y}{\partial \epsilon}\right){\epsilon=0} d \epsilon=\eta(x) d \epsilon ; $$ this is just like a differential $d Y$ if $\epsilon$ is the variable. The meaning of $\delta y^{\prime}$ is $$ \delta y^{\prime}=\left(\frac{\partial Y^{\prime}}{\partial \epsilon}\right){\epsilon=0} d \epsilon=\eta^{\prime}(x) d \epsilon .
$$
This is identical with
$$
\frac{d}{d x}(\delta y)=\frac{d}{d x}[\eta(x) d \epsilon]=\eta^{\prime}(x) d \epsilon
$$


英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MA40059 COURSE NOTES :

We can show that these nine quantities are the components of a second-rank tensor which we shall denote by UV. Note that this is not a dot product or a cross product; it is called the direct product of $\mathrm{U}$ and $\mathrm{V}$ (or outer product or tensor product). Since $\mathbf{U}$ and $\mathbf{V}$ are vectors, their components in a rotated coordinate system are:
$$
U_{k}^{\prime}=\sum_{i=1}^{3} a_{k i} U_{i}, \quad V_{l}^{\prime}=\sum_{j=1}^{3} a_{l j} V_{j} .
$$
Hence the components of the second-rank tensor UV are
$$
U_{k}^{\prime} V_{l}^{\prime}=\sum_{i=1}^{3} a_{k i} U_{i} \sum_{j=1}^{3} a_{l j} V_{j}=\sum_{i, j=1}^{3} a_{k i} a_{l j} U_{i} V_{j}
$$
which is just with $T_{i j}=U_{i} V_{j}$ and $T_{k l}^{\prime}=U_{k}^{\prime} V_{l}^{\prime}$.



数学方法|MA30059 Mathematical methods 2代写

0

ToTopics will be chosen from the following: Elliptic equations in two independent variables: Harmonic functions. Mean value property. Maximum principle (several proofs). Dirichlet and Neumann problems. Representation of solutions in terms of Green’s functions.

这是一份Bath巴斯大学MA30059 作业代写的成功案

数学方法|MA30059 Mathematical methods 2代写

$$
|\Gamma(z)| \leq \Gamma(x), \quad \operatorname{Re}(z)=x>0
$$
If $f(z)$ is a complex function of $z$, then writing $f(z)$ as
$$
f(z)=u(x, y)+i v(x, y),
$$
it follows that the Cauchy-Riemann equations [7] must be satisfied, i.e.,
$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$
For $f(z)=\Gamma(z)$, we have, using the relation,
$$
\begin{aligned}
t^{z} &=e^{z \ln t}=e^{x \ln t+i y \ln t} \
&=e^{x \ln t}[\cos (y \ln t)+i \sin (y \ln t)]
\end{aligned}
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MA30059 COURSE NOTES :

Therefore, we conclude that
$$
R(m, n) \equiv \int_{0}^{1} x^{m}(\ln x)^{n} d x=\frac{(-1)^{n} n !}{(m+1)^{n+1}}
$$
Note that for $n=0$, we obtain
$$
R(m, n)=\int_{0}^{1} x^{m} d x=\frac{1}{m+1}
$$
and for $m=0$,
$$
R(0, n)=\int_{0}^{1}(\ln x)^{n} d x=(-1)^{n} n !
$$




数学方法2|MA30059/MA40059/MA50059 Mathematical Methods 2代写

0

In some sense, the unifying theme of the unit is partial differential equations (we shall see that
although variational principles such as those mentioned in Section 1.1.3 are not differential equations, they are intimately linked to them). You have met several PDEs over the last few years, but
we shall (hopefully) study PDEs in a different manner to how you may have done so up to this
point.

这是一份UCL伦敦大学学院MA30059/MA40059/MA50059 作业代写的成功案

数学方法2|MA30059/MA40059/MA50059 Mathematical Methods 2代写

Fix $\mathbf{x} \in \mathbb{R}^{m}$.
(i) A distribution $T: C_{c}^{\infty}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ is called a fundamental solution of Laplace’s equation with respect to the point $\mathbf{x} \in \mathbb{R}^{m}$ if
$$
\Delta T=\delta_{\mathrm{x}},
$$
that is, equality as distributions. Here $\delta_{\mathbf{x}}$ is the shifted Dirac Delta distribution defined by $\delta_{\mathbf{x}}(\phi)=\phi(\mathbf{x})$ for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{m}\right)$.
(ii) Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{m}\right)$. As $\phi$ is compactly supported, there exists $\rho>0$ such that $|\mathbf{x}|<\rho$ and $\phi(\mathbf{y})=0$ for all $\mathbf{y} \in \mathbb{R}^{m}$ with $|\mathbf{y}| \geq \rho$. Choose $\Omega:=B(\mathbf{0}, \rho+1)$, so that
$\phi, \frac{\partial \phi}{\partial n}=0 \quad$ on $\partial \Omega$,
and $\mathbf{x} \in \Omega$. Since evidently $\phi \in C^{2}(\bar{\Omega})$, Green’s Integral Representation reduces to
$$
\int_{\mathbb{R}^{m}} N_{\mathbf{x}}(\mathbf{y}) \Delta \phi(\mathbf{y}) \mathrm{d} \mathbf{y}=\phi(\mathbf{x}) .
$$
As $\phi$ was arbitrary, in terms of distributions, this reads
$$
\Delta T_{N_{\mathrm{x}}}=\delta_{\mathrm{x}}
$$
where $T_{N_{\mathbf{x}}}$ is the distribution corresponding to $N_{\mathbf{x}}$, as required.

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MA30059/MA40059/MA50059 COURSE NOTES :

We need to find a $v$ satisfying $(1)-(3)$ above. Then we set $G(\mathbf{x}, \mathbf{y}):=N_{\mathbf{x}}(\mathbf{y})+v(\mathbf{x}, \mathbf{y})$ If $\mathbf{x}=0$, then (3) becomes
$$
v(\mathbf{0}, \mathbf{y})=\frac{1}{4 \pi} \quad \forall y \in \partial \Omega_{0},
$$
so we can just choose
$$
v(\mathbf{0}, \mathbf{y})=\frac{1}{4 \pi} \quad \forall y \in \bar{\Omega}{0}, $$ which satisfies Laplace’s equation in $\Omega$ (and is in $C^{2}(\bar{\Omega})$ ) since it is constant. We now consider the case $\mathbf{x} \neq 0$. In light of the key property of $\mathbf{r}(\mathbf{x})$, namely, $$ |\mathbf{x}| \cdot|\mathbf{y}-\mathbf{r}(\mathbf{x})|=|\mathbf{y}-\mathbf{x}| \quad \forall \mathbf{x} \in \Omega{0} \backslash{\mathbf{0}}, \forall \mathbf{y} \in \partial \Omega_{0},
$$
the requirement (3) becomes
$$
v(\mathbf{x}, \mathbf{y})=\frac{1}{4 \pi} \frac{1}{|\mathbf{x}-\mathbf{y}|}=\frac{1}{4 \pi} \frac{1}{|\mathbf{x}| \cdot|\mathbf{y}-\mathbf{r}(\mathbf{x})|} \quad \forall \mathbf{y} \in \partial \Omega_{0}
$$
Thus, we let $v$ equal the function on the right hand side of the above for all $\mathbf{y} \in \Omega_{0}$, which is well defined since $\mathbf{r}(\mathbf{x})-\mathbf{y} \neq \mathbf{0}$ for all $\mathbf{y} \in \bar{\Omega}{0}$ and $\mathbf{x} \in \Omega{0} \backslash{\mathbf{0}}$. Furthermore, since
$$
v(\mathbf{x}, \mathbf{y})=-\frac{1}{|\mathbf{x}|} N_{\mathbf{r}(\mathbf{x})}(\mathbf{y}) \quad \forall \mathbf{y} \in \bar{\Omega}_{0},
$$