线性代数|MATH1002/MATH1014/ MATH1902 Linear algebra代写 Sydney代写

0

这是一份Sydney悉尼大学MATH1002/MATH1014/ MATH1902 的成功案例

线性代数|MATH1002/MATH1014/ MATH1902 Linear algebra代写 Sydney代写


Let $V$ be the vector space over $\mathbb{Z}{2}$ with basis $$ e{k}=(0, \ldots, 0,1,0, \ldots)
$$
where the 1 is in the $k$ th position. Thus, $V$ is the set of all infinite binary sequences with a finite number of 1 ‘s. Define the order $o(v)$ of any $v \in V$ to be the largest coordinate of $v$ with value 1 . Then $o(v)<\infty$ for all $v \in V$. Consider the dual vectors $e_{k}^{}$, defined (as usual) by $$ e_{k}^{}\left(e_{j}\right)=\delta_{k, j} $$ For any $v \in V$, the evaluation functional $\bar{v}$ has the property that $$ \bar{v}\left(e_{k}^{}\right)=e_{k}^{}(v)=0 \text { if } k>o(v)
$$
However, since the dual vectors $e_{k}^{}$ are linearly independent, there is a linear functional $f \in V^{ }$ for which $$ f\left(e_{k}^{}\right)=1
$$
for all $k \geq 1$. Hence, $f$ does not have the form $v$ for any $v \in V$. This shows that the canonical map is not surjective and so $V$ is not algebraically reflexive.


英国论文代写Viking Essay为您提供作业代写代考服务

MATH1002/MATH1014/ MATH1902 COURSE NOTES :

I) For $\tau, \sigma \in \mathcal{L}(V, W)$ and $a, b \in F$.
$$
(a \tau+b \sigma)^{x}=a \tau^{x}+b \sigma^{\times}
$$
2) For $\sigma \in \mathcal{L}(V, W)$ and $\tau \in \mathcal{L}(W, U)$.
$$
(\tau \sigma)^{x}=\sigma^{x} \tau^{x}
$$
3) For any imertible $\tau \in \mathcal{L}(V)$.
$$
\left(\tau^{-1}\right)^{x}=\left(\tau^{x}\right)^{-1}
$$
Proof of part 1) is left for the reader. For part 2), we have for all $f \in U^{*}$,
$$
(\tau \sigma)^{x}(f)=f(\tau \sigma)=\sigma^{\times}(f \tau)=\sigma^{\times}\left(\tau^{\times}(f)\right)=\left(\sigma^{\times} \tau^{\times}\right)(f)
$$$$
\tau^{x}\left(\tau^{-1}\right)^{x}=\left(\tau^{-1} \tau\right)^{\times}=\iota^{x}=\iota
$$
and in the same way, $\left(\tau^{-1}\right)^{x} \tau^{x}=\iota$. Hence $\left(\tau^{-1}\right)^{x}=\left(\tau^{x}\right)^{-1} . \square$













多变量微积分和建模|MATH1023/MATH1923 Multivariable Calculus and Modelling代写 Sydney代写

0

这是一份Sydney悉尼大学MATH1023/MATH1923的成功案例

多变量微积分和建模|MATH1023/MATH1923 Multivariable Calculus and Modelling代写 Sydney代写



$$
\left[\begin{array}{c}
1 \
0 \
-3
\end{array}\right] \times\left[\begin{array}{l}
0 \
1 \
2
\end{array}\right]
$$
Solution: We have
$$
\begin{aligned}
(\vec{i}-3 \vec{k}) \times(\vec{j}+2 \vec{k}) &=\vec{i} \times \vec{j}+2 \vec{i} \times \vec{k}-3 \vec{k} \times \vec{j}-6 \vec{k} \times \vec{k} \
&=\vec{k}-2 \vec{j}+3 \vec{i}+6 \overrightarrow{0} \
&=3 \vec{i}-2 \vec{j}+\vec{k}
\end{aligned}
$$
Hence
$$
\left[\begin{array}{c}
1 \
0 \
-3
\end{array}\right] \times\left[\begin{array}{l}
0 \
1 \
2
\end{array}\right]=\left[\begin{array}{c}
3 \
-2 \
1
\end{array}\right]
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH1023/MATH1923 COURSE NOTES :

The area of the triangle is
$$
\frac{\left|\overrightarrow{\mathrm{AD}^{\prime}} \times \overrightarrow{\mathrm{AM}}\right|}{2}=\frac{1}{2} \sqrt{3^{2}+1^{2}+6^{2}}=\frac{\sqrt{46}}{2} .
$$

We have $\overrightarrow{\mathbf{A C}^{\prime}}=\left[\begin{array}{c}-2 \ 3 \ 1\end{array}\right]$, and hence the line $\overleftrightarrow{\mathbf{A C}^{\prime}}$ has parametric equation
$$
\left(\begin{array}{l}
x \
y \
z
\end{array}\right)=\left(\begin{array}{l}
2 \
0 \
0
\end{array}\right)+t\left[\begin{array}{c}
-2 \
3 \
1
\end{array}\right] \Longrightarrow x=2-2 t, y=3 t, z=t .
$$

Since $P$ is on the $z$-axis, $P=\left(\begin{array}{c}0 \ 0 \ z^{\prime}\end{array}\right)$ for some real number $z^{\prime}>0$. The parametric equation of the line $\overleftrightarrow{\mathrm{MP}}$ is thus
$$
\left(\begin{array}{l}
x \
y \
z
\end{array}\right)=\left(\begin{array}{l}
1 \
3 \
0
\end{array}\right)+s\left[\begin{array}{c}
-1 \
-3 \
z^{\prime}
\end{array}\right] \Longrightarrow x=1-s \quad y=3-3 s, \quad z=s z^{\prime}
$$
Since $N$ is on both $\overleftrightarrow{\mathrm{MP}}$ and $\overleftrightarrow{\mathrm{AC}}$ ‘ we must have
$$
2-2 t=1-s, 3 t=3-3 s, t=s z^{\prime}
$$