量子力学和原子物理学|PHYS3001 Quantum Mechanics and Atomic Physics UWA代写

0

这是一份uwa西澳大学PHYS3001的成功案例

量子力学和原子物理学|PHYS3001 Quantum Mechanics and Atomic Physics UWA代写


The direct comparison of angle resolved Auger spectra yields further results. Hemmers determined the energy resolved Auger spectrum for two different polar angles: $\theta=0^{\circ}$ and $\theta=54.7^{\circ}$. It follows from (3.116) for the Auger angular distribution
$$
\begin{gathered}
I\left(0^{\circ}\right)=\frac{I_{0}}{4 \pi}(1+\beta) \
I\left(54.7^{\circ}\right)=\frac{I_{0}}{4 \pi}
\end{gathered}
$$

英国论文代写Viking Essay为您提供作业代写代考服务

PHYS3001 COURSE NOTES :

The first term in corresponds to the electric dipole $E 1$ approximation with the transition operator (in the length form of the long-wave length approximation)
$$
T_{\lambda}^{E 1}=D_{\lambda}=\sum_{n}\left(r_{n}\right){\lambda}=\sqrt{\frac{4 \pi}{3}} \sum{n} r_{n} Y_{1 \lambda}\left(\theta_{n}, \phi_{n}\right) .
$$
The ‘first-order’ corrections to the dipole approximation are given by the second, magnetic dipole $M 1$ term with the transition operator
$$
T_{\lambda}^{M 1}=-\mathrm{i} M_{\lambda}=-\mathrm{i} \frac{\alpha}{2} \sum_{n}\left[\left(\ell_{n}\right){\lambda}+2\left(s{n}\right){\lambda}\right], $$ and by the third, electric quadrupole $E 2$ term with the transition operator $$ T{\lambda}^{E 2}=\frac{\mathrm{i} \alpha \omega}{2 \sqrt{3}} Q_{\lambda}=\frac{\mathrm{i} \alpha \omega}{2 \sqrt{3}} \sqrt{\frac{4 \pi}{5}} \sum_{n} r_{n}^{2} Y_{2 \lambda}\left(\theta_{n}, \phi_{n}\right) .
$$













原子、光子和基金粒子 Atoms, Photons & Fund Particle PHYS3001

0

这是一份nottingham诺丁汉大学PHYS3001作业代写的成功案例

原子、光子和基金粒子 Atoms, Photons & Fund Particle PHYS3001

$$
K_{0}\left(t, \boldsymbol{r}-\boldsymbol{r}^{\prime}\right)=\left(\frac{m}{2 \pi \mathrm{i} t}\right)^{3 / 2} \mathrm{e}^{\mathrm{im} r^{2} /(2 t)}\left[\mathrm{e}^{-\mathrm{i} m \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} / t}+I\left(t, \boldsymbol{r}, \boldsymbol{r}^{\prime}\right)\right]
$$
where
$$
I\left(t, \boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\mathrm{e}^{-\mathrm{i} m \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} / t}\left[\mathrm{e}^{\mathrm{i} m r^{2} /(2 t)}-1\right] .
$$
Substituting $(9.22 \mathrm{a})$ into $(9.21 \mathrm{a})$, we find that
$$
\chi(t, \boldsymbol{r})=\left(\frac{m}{\mathrm{i} t}\right)^{3 / 2} \mathrm{e}^{\mathrm{i} m r^{2} /(2 t)}[\tilde{\chi}(m \boldsymbol{r} / t)+R(t, \boldsymbol{r})]
$$
where $\tilde{\chi}(m \boldsymbol{r} / t)$ is the Fourier transform of the wave packet $\chi\left(\boldsymbol{r}^{r}\right)$ from (9.21b), i.e.
$$
\tilde{\chi}(m \boldsymbol{r} / t)=(2 \pi)^{-3 / 2} \int \mathrm{d} \boldsymbol{r}^{\prime} \mathrm{e}^{-\mathrm{i} m \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} / t} \chi\left(\boldsymbol{r}^{\prime}\right)
$$
Here, the so-called residual function $R(t, \boldsymbol{r})$ has the form
$$
R(t, \boldsymbol{r})=(2 \pi)^{-3 / 2} \int \mathrm{d} r^{\prime} \mathrm{e}^{-\mathrm{i} m \boldsymbol{r} \cdot \boldsymbol{r}^{\prime} / t}\left[\mathrm{e}^{\mathrm{i} m r^{2} /(2 t)}-1\right] \times\left(\boldsymbol{r}^{\prime}\right)
$$

英国论文代写Viking Essay为您提供作业代写代考服务

PHYS3001 COURSE NOTES :

$$
\left|\left\langle\boldsymbol{r} \mid U_{0}(t) \psi_{0}\right\rangle\right| \leq \frac{C}{t^{3 / 2}} \quad(t>0)
$$
where $C$ is a positive constant. This enables us to write
$$
\left|V U_{0}(t) \psi_{0}\right| \leq \frac{C}{t^{3 / 2}}|V|
$$
which implies that
$$
\begin{gathered}
I\left(t_{0}, \psi_{0}\right)=\int_{t_{0}}^{\infty} \mathrm{d} t|\xi(t)| \leq C|V| \int_{t_{0}}^{\infty} \mathrm{d} t t^{-3 / 2}=2 \frac{C|V|}{t_{0}^{1 / 2}}=\frac{C_{0}|V|}{t_{0}^{1 / 2}} \
I\left(t_{0}, \psi_{0}\right)<\infty \quad\left(t_{0}>0\right)
\end{gathered}
$$
Hence, in the case of short-range potentials $(|V|<\infty)$, the integral $I\left(t_{0}, \psi_{0}\right)$ exists for a certain $t_{0}>0$. Then, the relations $(9.14 \mathrm{~b}, \mathrm{c})$ and $(9.27)$ give
$$
\left|\Omega\left(t_{0}\right) \psi_{0}-\Omega(\infty) \psi_{0}\right| \leq I\left(t_{0}, \psi_{0}\right) \leq \frac{C_{0}|V|}{t_{0}^{1 / 2}}<\infty
$$