统计学习|STAT3064 Statistical Learning代写 UWA代写

0

这是一份uwa西澳大学STAT3064的成功案例

统计学习|STAT3064 Statistical Learning代写 UWA代写

$c_{0} \beta_{0}+c_{1} \beta_{1}$, hence on $g(x)=\beta_{0}+\beta_{1} x$. Since $C=R_{2}, V_{1}=V=\mathscr{L}(\mathbf{J}, \mathbf{x})$. Thus, $100 \%$ simultaneous confidence intervals on $g(x)=\beta_{0}+\beta_{1} x$ are given by
$$
\hat{g}(x) \pm K S\left(\hat{\eta}{c}\right) \quad \text { for } K=\sqrt{2 F{2, n-2, \gamma}}
$$
where $\hat{g}(x)=\hat{\beta}{0}+\hat{\beta}{1} x$. Since $\operatorname{Var}(g(x))=h(x) \sigma^{2}$, where $h(x)=1 / n+(x-\bar{x})^{2} /$ $S_{x x}$, the simultaneous intervals are
$$
\hat{g}(x) \pm\left[h(x) S^{2}\right]^{1 / 2} K
$$
We earlier found that a $100 \% \%$ confidence interval on $g(x)$, holding for that $x$ only, is
$$
g(x) \pm t h(x)^{1 / 2} S \quad \text { for } \quad t=t_{n-2,(t+n) 2}
$$
Thus the ratio of the length of the simultaneous interval at $x$ to the individual interval is $(K / t)=\left(2 F, 2 t^{2}-3(1+w /)^{1 / 2}\right.$, which always exceeds one.


英国论文代写Viking Essay为您提供作业代写代考服务

STAT3064 COURSE NOTES :

$$
\begin{aligned}
\beta_{j}=\bar{\mu}{\cdot j}-\mu=\frac{1}{I} \sum{i} \mu_{i j}-\mu \
(\alpha \beta){i j} &=\mu{i j}-\left[\mu+\alpha_{i}+\beta_{j}\right] .
\end{aligned}
$$
Then $\mu_{i j}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta){i j}$. The full model then can be written as follows. $$ \text { Full model: } \quad Y{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta){i j}+\varepsilon{i j k},
$$
where
$$
\sum_{1}^{l} \alpha_{i}=\sum_{1}^{J} \beta_{j}=\sum_{i}(\alpha \beta){i j}=\sum{j}(\alpha \beta){i j}=0, \quad \text { and } \quad \varepsilon{i j k} \sim N\left(0, \sigma^{2}\right)
$$












统计学习 Statistical Learning MATH5743M01

0

这是一份leeds利兹大学MATH5743M01作业代写的成功案例

统计学习 Statistical Learning MATH5743M01

An iterative descent algorithm for solving
$$
C^{}=\min {C} \sum{k=1}^{K} N_{k} \sum_{C(i)=k}\left|x_{i}-\bar{x}{k}\right|^{2} $$ can be obtained by noting that for any set of observations $S$ $$ \bar{x}{S}=\operatorname{argmin}{m} \sum{i \in S}\left|x_{i}-m\right|^{2} .
$$
Hence we can obtain $C^{}$ by solving the enlarged optimization problem

英国论文代写Viking Essay为您提供作业代写代考服务

MATH5743M01 COURSE NOTES :

$\rho>0$ is the (constant) density of the fluid and $\Omega$ is some element of $C^{2}(I, \mathbb{R}) \cap$ $C(\bar{I}, \mathbb{R})$. Here $I:=\left(R_{1}, R_{2}\right)$. Note that
$$
v_{0}=\nabla \times\left(0,0, \psi_{0}\right)
$$
where
$$
\psi_{0}(x, y, z):=-\int_{R_{1}}^{\sqrt{x^{2}+y^{2}}} r Q(r) d r
$$
for all $(x, y, z) \in U \times \mathbb{R}$ and that the vorticity $\omega_{0}:=\nabla \times \nu_{0}$ is given by
$$
\omega_{0}(x, y, z)=\left(0,0,-\left(\Delta \psi_{0}\right)(x, y, z)\right)=\left(0,0, \omega_{0}\left(\sqrt{x^{2}+y^{2}}\right)\right)
$$
for all $(x, y, z) \in U \times \mathbb{R}$. Here $\omega_{b e}: I \rightarrow \mathbb{R}$ is defined by
$$
\omega_{Q}(r):=r \Omega^{\prime}(r)+2 \Omega(r)
$$
for all $r \in I$. In the vorticity formulation the governing equation for reduced small axial variations of such a $\omega_{0}$ of the form
$$
(0,0, \omega(r, z) \exp (i m \varphi))
$$