数论  Theory of Numbers MATH3701

0

这是一份UCL伦敦大学 MATH003701作业代写的成功案例

数论  Theory of Numbers MATH3701
问题 1.

Proof. Assume, by way of contradiction, that there are only a finite number of prime numbers, say:
$$
p_{1}, p_{2}, \ldots, p_{n}
$$
Define
$$
N=p_{1} p_{2} \cdots p_{n}+1
$$


证明 .

Since $p_{1} \geq 2$, clearly $N \geq 3$. So by Lemma $10.2 N$ has a prime divisor $p$. By assumption $p=p_{i}$ for some $i=1, \ldots, n$. Let $a=p_{1} \cdots p_{n}$. Note that
$$
a=p_{i}\left(p_{1} p_{2} \cdots p_{i-1} p_{i+1} \cdots p_{n}\right),
$$
so $p_{i} \mid a$. Now $N=a+1$ and by assumption $p_{i} \mid a+1$. So by Exercise $3.2$ $p_{i} \mid(a+1)-a$, that is $p_{i} \mid$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH003701 COURSE NOTES :

$$
a, a+1, a+2, \ldots, a+(n-1)
$$
are all composite.
Proof. Given $n \geq 1$ let $a=(n+1) !+2$. We claim that all the numbers
$$
a+i, \quad 0 \leq i \leq n-1
$$
composite. Since $(n+1) \geq 2$ clearly $2 \mid(n+1)$ ! and $2 \mid 2$. Hence $2 \mid(n+1) !+2$. Since $(n+1) !+2>2,(n+1) !+2$ is composite. Consider
$$
a+i=(n+1) !+i+2
$$







数论|Theory of Numbers代写 MATH 471

0

这是一份umass麻省大学 MATH 471作业代写的成功案例

数论|Theory of Numbers代写 MATH 471
问题 1.

Hence
$$
L(r f)=r L(f)=r U(f)=U(r f) .
$$
On the other hand, if $r<0$, then for any partition $P$ of $[a, b]$, we see that
$$
L(P, r f)=r U(P, f) \quad \text { and } \quad U(P, r f)=r L(P, f)
$$

证明 .

and so
$$
L(r f)=r U(f)=r L(f)=U(r f) .
$$
In both the cases, we see that $r f$ is integrable and
$$
\int_{a}^{b}(r f)(x) d x=r \int_{a}^{b} f(x) d x .
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MMATH 471 COURSE NOTES :

Hence
$$
F(x)-F(a)=\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]=\sum_{i=1}^{n} g\left(s_{i}\right)\left(x_{i}-x_{i-1}\right)
$$
and so
$$
L\left(P_{e}, g\right) \leq F(x)-F(a) \leq U\left(P_{e}, g\right)
$$
Since we also have
$$
L\left(P_{\epsilon}, g\right) \leq \int_{a}^{x} g(t) d t \leq U\left(P_{\epsilon}, g\right)
$$