高级量子理论|PH40084 Advanced quantum theory代写

这是一份bath巴斯大学PH40084作业代写的成功案

物理数学|PH40073 Mathematical physics代写


Derivation. Starting with a three-component wave function $\phi_{i}$ describing a massive spin-1 free particle in its rest frame, two possible rest-frame covariant forms exist: a covariant four-vector $\phi_{\mu}=\left(0, \phi_{i}\right)$ and a rank-two antisymmetric (field) tensor $\phi_{\mu \nu}$ given by (recall the angular-momentum tensor operators $L_{\mu v}$ and $J_{\mu v}$ in Chapter 3) $\phi_{0 i}=-\phi_{i 0}=\partial_{t} \phi_{i}$ and $\phi_{00}=\phi_{i j}=0$. In a general frame, the boosted form of $\phi_{\mu v}$ can be obtained from $\phi_{m}$ as
$$
\phi_{\mu v}=\partial_{\mu} \phi_{v}-\partial_{v} \phi_{\mu^{}} $$ The free-particle dynamical relation between $\phi_{\mu}$ and $\phi_{\mu v}$ is called the Proca equation: $$ \partial^{v} \phi_{\mu v}=m^{2} \phi_{\mu^{}}
$$
Owing to the antisymmetric structure of $\phi_{\mu \nu}$, the derivative of (4.38) implies the subsidiary condition
$$
\partial^{\mu} \phi_{\mu}=0
$$



英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

PH40084 COURSE NOTES :


Furthermore, since $H_{0}$ must be an observable hermitian operator, so must $\alpha_{i}$ and $\beta$ be hermitian:
$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad \beta^{\dagger}=\beta .
$$
The adjoint row bispinor $\psi^{\dagger}$ can be combined with the column bispinor $\psi$ to form a positive definite probability density
$$
\rho=\psi^{\dagger} \psi=\sum_{\sigma=1}^{4} \psi_{\sigma}^{*} \psi_{\sigma},
$$
now naturally linked with the hermitian probability current density
$$
\mathbf{j}=\psi^{\dagger} \boldsymbol{\alpha} \psi .
$$



发表评论

您的电子邮箱地址不会被公开。