矩阵分析 Matrix Analysis MATH36001

这是一份manchester曼切斯特大学 MATH36001作业代写的成功案例

矩阵分析 Matrix Analysis MATH36001
问题 1.

Specifically, we see from the definition of matrix multiplication that the Newton equations are equivalent to the vector equations
$$
d \mathbf{F}=J_{\mathbf{F}}\left(\mathbf{x}{0}\right) d \mathbf{x}=-\mathbf{F}\left(\mathbf{x}^{(0)}\right) $$ If the Jacobian matrix is invertible, then $$ \mathbf{x}^{(1)}-\mathbf{x}^{(0)}=J{\mathbf{F}}\left(\mathbf{x}^{(0)}\right)^{-1} \mathbf{F}\left(\mathbf{x}^{(0)}\right)
$$



证明 .

whence by adding $\mathbf{x}{0}$ to both sides we see that $$ \mathbf{x}^{(1)}=\mathbf{x}^{(0)}-J{\mathbf{F}}\left(\mathbf{x}^{(0)}\right)^{-1} \mathbf{F}\left(\mathbf{x}^{(0)}\right)
$$
Now replace 1 by $n+1$ and 0 by $n$ to obtain the famous Newton formula in vector form:
$$
\mathbf{x}^{(n+1)}=\mathbf{X}^{(n)}-J_{\mathbf{F}}\left(\mathbf{X}^{(n)}\right)^{-1} \mathbf{F}\left(\mathbf{x}^{(n)}\right)
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH36001 COURSE NOTES :

Thanks to the inverse formula, we can now find an explicit formula for solving linear systems with a nonsingular coefficient matrix. Here’s how we proceed. To solve $A \mathrm{x}=\mathbf{b}$ we multiply both sides on the left by $A^{-1}$ to obtain that $\mathbf{x}=A^{-1} \mathbf{b}$. Now use the inverse formula to obtain
$$
\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{\operatorname{det} A} \operatorname{adj}(A) \mathbf{b}
$$
The explicit formula for the $i$ th coordinate of $x$ that comes from this fact is
$$
x_{i}=\frac{1}{\operatorname{det} A} \sum_{j=1}^{n} A_{j i} b_{j} .
$$








发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注