数学分析|MATH2023/MATH2923 Analysis代写 Sydney代写

0

这是一份Sydney悉尼大学MATH2023/MATH2923的成功案例

数学分析|MATH2023/MATH2923 Analysis代写 Sydney代写


We have
$$
\Phi_{p}(f)=|\Omega|^{-\frac{1}{p}}|f|_{L^{p}(\Omega)} .
$$
By corollary $\Phi_{p}(f)$ viewed as a function of $p$ is increasing with
$$
\Phi_{p}(f) \leq|f|_{L^{\infty}(\Omega)}
$$ that
$$
|f|_{L^{\infty}(\Omega)} \leq \lim {p \rightarrow \infty} \Phi{p}(f)
$$
For $K \in \mathbf{R}$ let
$$
A_{K}:={x \in \Omega|| f(x) \mid \geq K} .
$$
The set $A_{k}$ is measureable since $f$ is and $\left|A_{K}\right|>0$ if $K<|f|_{L^{\infty}(\Omega)}$. Moreover,
$$
\Phi_{p}(f) \geq|\Omega|^{-\frac{1}{p}}\left(\int_{A_{K}}|f(x)|^{p} d x\right)^{1 / p} \geq|\Omega|^{-\frac{1}{p}}\left|A_{K}\right|^{\frac{1}{p}} K .
$$
Passing to the limit $p \rightarrow \infty$ we obtain
$$
\lim {p \rightarrow \infty} \Phi{p}(f) \geq K
$$
Because this holds for all $K<|f|_{L^{\infty}(\Omega)}$ we conclude
$$
\lim {p \rightarrow \infty} \Phi{p}(f) \geq|f|_{L^{\infty}(\Omega)}
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH2023/MATH2923 COURSE NOTES :

Let $\left(f_{k}\right){k \in \mathrm{N}} \subset L^{P}(\Omega)$ be a Cauchy sequence. It suffices to show that $\left(f{k}\right)$ has a convergent subsequence. For every $i \in \mathrm{N}$ there is an integer $N_{i}$ so that
$$
\left|f_{n}-f_{m}\right|_{L P(\Omega)} \leq 2^{-i} \text { whenever } n, m \geq N_{i} .
$$
We construct a subsequence $\left(f_{k_{i}}\right) \subset\left(f_{k}\right)$ so that
$$
\left|f_{k_{i+1}}-f_{k_{i}}\right|_{L P(\Omega)} \leq 2^{-i}
$$
by setting $k_{i}:=\max \left{i, N_{i}\right}$. In order to simplify notation we will from now on assume that
$$
\left|f_{k+1}-f_{k}\right|_{L F(\Omega)} \leq 2^{-k}
$$
so that
$$
M:=\sum_{k \in \mathbf{N}}\left|f_{k+1}-f_{k}\right|_{L^{p}(\Omega)}<\infty
$$















数学分析 Mathematical Analysis  MA140-10/MA152-15 

0

这是一份warwick华威大学MA140-10/MA152-15的成功案例

数学分析 Mathematical Analysis  MA140-10/MA152-15 


Proof As is shown in linear algebra, the matrix $A$ that represents $T$ is a product of elementary matrices
$$
A=E_{1} \cdots E_{k} .
$$
Each elementary $2 \times 2$ matrix is one of the following types:
$$
\left[\begin{array}{ll}
\lambda & 0 \
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \
0 & \lambda
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
1 & \sigma \
0 & 1
\end{array}\right]
$$
where $\lambda>0$. The first three matrices represent isomorphisms whose effect on $I^{2}$ is obvious: $I^{2}$ is converted to the rectangles $\lambda I \times I, I \times \lambda I, I^{2}$. In each case, the area agrees with the magnitude of the determinant. The fourth isomorphism converts $I^{2}$ to the parallelogram$\Pi$ is Riemann measurable since its boundary is a zero set. By Fubini’s Theorem, we get
$$
|\Pi|=\int \chi_{\Pi}=\int_{0}^{1}\left[\int_{x=\sigma x}^{x=1+\sigma y} 1 d x\right] d y=1=\operatorname{det} E .
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MA140-10/MA152-15 COURSE NOTES :

$$
d x_{I}: \varphi \mapsto \int_{l^{k}} \frac{\partial \varphi_{I}}{\partial u} d u
$$
where this integral notation is shorthand for
$$
\int_{0}^{1} \ldots \int_{0}^{1} \frac{\partial\left(\varphi_{i_{1}}, \ldots, \varphi_{i_{k}}\right)}{\partial\left(u_{1}, \ldots, u_{k}\right)} d u_{1 \ldots} . d v_{k}
$$
If $f$ is a smooth function on $\mathbb{R}^{n}$ then $f d x_{l}$ is the functional
$$
f d x_{I}: \varphi \mapsto \int_{I^{k}} f(\varphi(u)) \frac{\partial \varphi_{I}}{\partial u} d u
$$










数学分析 Analysis MATH41220-WE01/MATH1051-WE01/MATH3011-WE01

0

这是一份durham杜伦大学MATH41220-WE01/MATH1051-WE01/MATH3011-WE01作业代写的成功案例

数学分析 Analysis MATH41220-WE01/MATH1051-WE01/MATH3011-WE01
问题 1.

Thus $\left(d\left(p_{n}, q_{n}\right)\right)$ is a Cauchy sequence in $\mathbb{R}$, and because $\mathrm{R}$ is complete,
$$
L=\lim {n \rightarrow \infty} d\left(p{n}, q_{n}\right)
$$
exists. Let $\left(p_{n}^{\prime}\right)$ and $\left(q_{n}^{\prime}\right)$ be sequences that are co-Cauchy with $\left(p_{n}\right)$ and $\left(q_{n}\right)$, and let
$$
L^{\prime}=\lim {n \rightarrow \infty} d\left(p{n}^{\prime}, q_{n}^{\prime}\right) .
$$


证明 .

Then
$$
\left|L-L^{\prime}\right| \leq\left|L-d\left(p_{n}, q_{n}\right)\right|+\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)\right|+\left|d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)-L^{\prime}\right| .
$$
As $n \rightarrow \infty$, the first and third terms tend to 0 . the middle term is
$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)\right| \leq d\left(p_{n}, p_{n}^{\prime}\right)+d\left(q_{n}, q_{n}^{\prime}\right) .
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH41220-WE01/MATH1051-WE01/MATH3011-WE01 COURSE NOTES :

$$
|n|{p}=\frac{1}{p^{k}} $$ where $p^{k}$ is the largest power of $p$ that divides $n$. (The norm of 0 is by definition 0 .) The more factors of $p$, the smaller the $p$-norm. Similarly, if $x=a / b$ is a fraction, we factor $x$ as $$ x=p^{k} \cdot \frac{r}{s} $$ where $p$ divides neither $r$ nor $s$, and we set $$ |x|{p}=\frac{1}{p^{k}} .
$$
The $p$-adic metric on $Q$ is
$$
d_{p}(x, y)=|x-y|_{p} .
$$








量化方法|MA10214 Quantitative methods代写

0

The laws of Probability, Bayes’ Theorem, Decision Trees. Binomial, Poisson and Normal distributions and their applications; the relationship between these distributions. Different types of sample; sampling distributions of means, standard deviations and proportions. Confidence intervals and hypothesis testing; types of error, significance levels and P values. Power. Quality control: Acceptance sampling and Shewhart charts.

这是一份Bath巴斯大学学院MA10214作业代写的成功案

量化方法|MA10214 Quantitative methods代写

Let the exercise price be $E$ and the barrier be at $B$ where $B<E$.
Since the Black-Scholes partial differential equation governs the price of the option we can, as before, look for solutions of the form:
$$
c(S, E){d o}=A{1} S^{m_{1}}+A_{2} S^{m_{2}}
$$
subject to the boundary conditions: (i) $c_{d b}(B, E)=0$ and (ii) $c(\infty, E){d o}=S$, see the previous section. From (i) we have: $$ c{d b}(B, E)=A_{1} B^{m_{1}}+A_{2} B^{m_{2}}=0, \text { so } \quad A_{1}=-A_{2} B^{m_{2}-m_{n}}
$$
Therefore
$$
c_{d m}(S, E)=-A_{2} B^{m_{2}-m_{n}} S^{m_{1}}+A_{2} S^{m_{2}}
$$
From (ii), as $S \rightarrow \infty$ :
$$
c_{d m}(S, E)=-A_{2} B^{m_{2}-m_{n}} S^{m_{1}}+A_{2} S^{m_{2}}=S
$$
However, since $m_{2}<0$, we have $A_{2} S^{m_{2}} \rightarrow 0$, as $S \rightarrow \infty$, giving
$$
c_{d o}(S, E)=-A_{2} B^{m_{2}-m_{1}} S^{m_{n}}=S
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MA10214 COURSE NOTES :

The Black approximation, $C_{B L}$, can be expressed more concisely in terms of our previously defined notation as:
$$
C_{B L}(S, E, \tau)=\max \left(v_{1}, v_{2}\right)
$$
where $v_{1}$ and $v_{2}$ are the following European calls
$$
v_{1}=c\left(S_{D}, E, \tau\right) \quad \text { and } \quad v_{2}=c\left(S_{D}^{+}, E, \tau_{1}\right), \quad \tau=T-t \quad \tau_{1}=T-t_{n}
$$
and
$$
S_{D}=S-\sum_{i=1}^{n} D_{i} \quad \text { and } \quad S_{D}^{+}=S-\sum_{i=1}^{n-1} D_{i}
$$



数学分析|MA20219 Analysis 2B代写

0

If we adapt the ideas seen in previous analysis units, and in particular the idea of a derivative, to complex variables, then we find a remarkably beautiful theory. In particular, a lot of the complications coming from limited differentiability or from various notions of convergence fall away. Of course, this comes at a price, which is that complex differentiability is much more restrictive than the real counterpart. So we will have a very powerful theory, but it will apply only to a relatively small set of functions (which still includes rational, exponential, and trigonometric functions and much more).

这是一份Bath巴斯大学学院MA20219作业代写的成功案

数学分析|MA20219 Analysis 2B代写

Let $U=\mathbb{C} \backslash{1-i,-1-i, \log 2+\pi i}$. Consider the function $f: U \rightarrow \mathbb{C}$ given by
$$
f(z)=\frac{e^{z}+2}{(z-\log 2-\pi i)\left(z^{2}+2 i z-2\right)}, \quad z \in U .
$$
Let $\gamma:[-\pi / 2, \pi / 2+20] \rightarrow \mathbb{C}$ such that
$$
\gamma(t)= \begin{cases}10 e^{i t} & \text { if }-\pi / 2 \leq t \leq \pi / 2 \ (10+\pi / 2-t) i & \text { if } \pi / 2<t \leq \pi / 2+20\end{cases}
$$
Set $\Gamma=\gamma([-\pi / 2, \pi / 2+20])$.
You may use any result from the lectures and exercises to answer the following questions. If you need to determine any winding numbers, you may use geometric intuition.
(a) Show that $f$ has poles of order 1 at $1-i$ and $-1-i$.
(b) Sketch the curve $\Gamma$, including its position relative to the points $1-i$ and $-1-i$. Indicate the orientation of $\gamma$.
(c) The singularity of $f$ at $\log 2+\pi i$ is removable. Using this information (for which no proof is required), or otherwise, find
$$
\int_{\gamma} f(z) d z .
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MA20219 COURSE NOTES :

i. The singularities of the given function are 0 and 2 . The distance from the centre to the nearest singularity (apart from the centre itself) is therefore 2. So by a result from the lecture notes, the punctured disc of convergence has radius 2 and therefore is $B_{2}(0) \backslash{0}$.
ii. We have (using the geometric series) for $z \in B_{2}(0)$
$$
\frac{1}{z-2}=\frac{-1}{2} \frac{1}{1-\frac{z}{2}}=\frac{-1}{2} \sum_{k=0}^{\infty}\left(\frac{z}{2}\right)^{k}=\sum_{k=0}^{\infty} \frac{-1}{2^{k+1}} z^{k}
$$
so that for $z \in B_{2}(0) \backslash{0}$
$$
\frac{1}{z(z-2)}=\sum_{k=0}^{\infty} \frac{-1}{2^{k+1}} z^{k-1}=\sum_{n=-1}^{\infty} \frac{-1}{2^{n+2}} z^{n}
$$



代数 Algebra 1B MA10210

0

这是一份BATH巴斯大学MA10210作业代写的成功案例

数学分析 Analysis 1 MA10207
问题 1.

An equivalent system is, therefore,
$$
\begin{aligned}
&x+y-z=0 \
&-4 y+2 z=0
\end{aligned}
$$

证明 .

This has infinitely many solutions: $2 y=z, x=z-y=2 y-y=y$. Hence, $\operatorname{ker} T={(y, y, 2 y): y \in \mathbb{R}}$
$$
={y(1,1,2): y \in \mathbb{R}}=\langle(1,1,2)\rangle,
$$
and nullity $T=1$. Now $T((1,0,0))=(1,3,5), T((0,1,0))=(1,-1,1)$, $T((0,0,1))=(-1,-1,-3)$. But $(1,0,0),(0,1,0),(0,0,1)$ is a basis for $\mathbb{R}^{3}$, so $(1,3,5),(1,-1,1),(-1,-1,-3)$ is a spanning sequence for im $T$, by Theorem 6.4.3. These vectors must be linearly dependent, since, by the dimension theorem,c

英国论文代写Viking Essay为您提供作业代写代考服务

MA10210 COURSE NOTES :

to above is $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by
$$
T((x, y, z))=(x-y+2 z, 2 x+y-z, x-4 y+7 z)
$$
Now $T((1,0,0))=(1,2,1), \quad T((0,1,0))=(-1,1,-4), \quad T((0,0,1))=(2,-1,7)$ span im $T$, by Theorem $6.4 .3$. However,
$$
(1,2,1)=5(-1,1,-4)+3(2,-1,7),
$$
so these three vectors are linearly dependent. Since $(1,2,1),(-1,1,-4)$ are linearly independent, these two vectors form a basis for im $T$. Hence $\operatorname{rank} A=\operatorname{rank} T=2$.








数论 5E: Number Theory/4H: Number Theory MATHS5074_1/MATHS4108_1

0

这是一份GLA格拉斯哥大学MATHS5074_1作业代写的成功案例

数论 5E: Number Theory/4H: Number Theory MATHS5074_1/MATHS4108_1 4
问题 1.

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then the function $(f \circ \phi) \phi^{\prime}:[\alpha, \beta] \rightarrow \mathbb{R}$ is integrable and
$$
\int_{\phi(\alpha)}^{\phi(\beta)} f(x) d x=\int_{\alpha}^{\beta} f(\phi(t)) \phi^{\prime}(t) d t
$$

证明 .

If $f:[a, b] \rightarrow \mathbb{R}$ is integrable and $\phi^{\prime}(t) \neq 0$ for every $t \in(\alpha, \beta)$, then the function $(f \circ \phi)\left|\phi^{\prime}\right|:[\alpha, \beta] \rightarrow \mathbb{R}$ is integrable and
$$
\int^{b} f(x) d x=\int^{\beta} f(\phi(t))\left|\phi^{\prime}(t)\right| d t
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATHS5074_1/MATHS4108_1 COURSE NOTES :

Now take $\lambda \in \operatorname{Sp}(T)$. Put
$$
\lambda \neq z \Rightarrow g(z):=\frac{f(\lambda)-f(z)}{\lambda-z} ; \quad g(\lambda):=f^{\prime}(\lambda) .
$$
Clearly, $g$ is a holomorphic function (the singularity is “removed”). obtain
$$
g(T)(\lambda-T)=(\lambda-T) g(T)=f(\lambda)-f(T) .
$$
Consequently, if $f(\lambda) \in \operatorname{res}(f(T))$ then the operator $R(f(T), f(\lambda)) g(T)$ is inverse to $\lambda-T$. In other words, $\lambda \in \operatorname{res}(T)$, which is a contradiction. Thus,
$$
f(\lambda) \in \mathbb{C} \backslash \operatorname{res}(f(T))=\operatorname{Sp}(f(T))
$$
i.e., $f(\operatorname{Sp}(T)) \subset \operatorname{Sp}(f(T)) . \triangleright$








数学分析 Analysis 1 MA10207

0

这是一份BATH巴斯大学MA10207作业代写的成功案例

数学分析 Analysis 1 MA10207
问题 1.

Let $X$ be a (nonzero) complex Banach space and let $T$ be a bounded endomorphism of $X$; i.e., $T \in B(X)$. For $h \in \mathscr{H}(\mathrm{Sp}(T))$, the contour integral with kernel the resolvent $R(T, \cdot)$ of $T$ is denoted by
$$
\mathscr{R}_{T} h:=\frac{1}{2 \pi i} \oint h(z) R(T, z) d z
$$

证明 .

and called the Riesz-Dunford integral (of the germ $h$ ). If $f$ is a tunction holomorphic in a neighborhood about $\operatorname{Sp}(T)$ then put $f(T):=\mathscr{R}{T} f:=\mathscr{R}{T} \bar{f}$. We also use more suggestive designations like
$$
f(T)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-T} d z
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MA10207 COURSE NOTES :

Now take $\lambda \in \operatorname{Sp}(T)$. Put
$$
\lambda \neq z \Rightarrow g(z):=\frac{f(\lambda)-f(z)}{\lambda-z} ; \quad g(\lambda):=f^{\prime}(\lambda) .
$$
Clearly, $g$ is a holomorphic function (the singularity is “removed”). obtain
$$
g(T)(\lambda-T)=(\lambda-T) g(T)=f(\lambda)-f(T) .
$$
Consequently, if $f(\lambda) \in \operatorname{res}(f(T))$ then the operator $R(f(T), f(\lambda)) g(T)$ is inverse to $\lambda-T$. In other words, $\lambda \in \operatorname{res}(T)$, which is a contradiction. Thus,
$$
f(\lambda) \in \mathbb{C} \backslash \operatorname{res}(f(T))=\operatorname{Sp}(f(T))
$$
i.e., $f(\operatorname{Sp}(T)) \subset \operatorname{Sp}(f(T)) . \triangleright$








数学分析|Mathematical Analysis代写 MATH0048

0

这是一份ucl伦敦大学学院 math0048作业代写的成功案

数学分析|Mathematical Analysis代写 MATH0048
问题 1.

According to $5.6 .9$, for $|\lambda|>|T|$ there is an operator $(1-T / \lambda)^{-1}$ presenting the sum of the Neumann series; i.e.,
$$
R(T, \lambda)=\frac{1}{\lambda}\left(1-{ }^{T} / \lambda\right)^{-1}=\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{T^{k}}{\lambda^{k}}
$$


证明 .

It is clear that
$$
|R(T, \lambda)| \leq \frac{1}{|\lambda|} \cdot \frac{1}{1-|T | /| \lambda \mid} . \triangleright
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MATH0048 COURSE NOTES :

This entails sesquilinearity:
$$
\begin{aligned}
(y, x)=&(y, x){\mathbb{R}}-i(i y, x){\mathbb{R}}=(x, y){\mathbb{R}}-i(x, i y){\mathbb{R}} \
&=(x, y){\mathbb{R}}+i(i x, y){\mathbb{R}}=(x, y)^{*}
\end{aligned}
$$
since
$(x, i y){\mathbf{R}}=1 / 4\left(|x+i y|^{2}-|x-i y|^{2}\right)$ ${ }^{1}{ }^{1} / 4\left(|i||y-i x|^{2}-|-i||i x+y|^{2}\right)=-(i x, y){\mathbb{R}}$.