度量空间|MATH4061 Metric Spaces代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4061的成功案例

度量空间|MATH4061 Metric Spaces代写 Sydney代写


问题 1.

set $U_{2}$ to get $x_{2} \in B\left(x_{1}, r_{1}\right) \cap U_{2}$. Again, we can find $r_{2}$ such that $0<r_{2}<2^{-2}$ and $B\left[x_{2}, r_{2}\right] \subset B\left(x_{1}, r_{1}\right) \cap U_{2}$. Proceeding this way, for each $n \in \mathbb{N}$, we get $x_{n} \in X$ and an $r_{n}$ with the properties
$$
B\left[x_{n}, r_{n}\right] \subset B\left(x_{n-1}, r_{n-1}\right) \cap U_{n} \text { and } 0<r_{n}<2^{-n}
$$

证明 .

Clearly, the sequence $\left(x_{n}\right)$ is Cauchy: if $m \leq n$,
$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{n}, x_{n-1}\right)+\cdots+d\left(x_{m+1}, x_{m}\right) \leq \sum_{k=m}^{n} 2^{-k}
$$
Since $\sum_{k} 2^{-k}$ is convergent, it follows that $\left(x_{n}\right)$ is Cauchy.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4061 COURSE NOTES :


We shall sketch the argument. Let $m, M$ be such that
$$
m \leq \frac{\partial f}{\partial y}(x, y) \leq M, \text { for }(x, y) \in D
$$
Let $X:=\left(C[a, b], |_{\infty}\right)$. Consider
$$
T(\varphi)(x):=\varphi(x)-\frac{1}{M} f(x, \varphi(x)), \text { for } x \in[a, b]
$$
One shows that $T$ is a contraction by an obvious use of the mean value theorem.


















度量空间|MATH3961 Metric Spaces代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3961的成功案例

度量空间|MATH3961 Metric Spaces代写 Sydney代写


and also,
$$
x_{n}=y_{n}-\frac{1}{n}=\alpha+\frac{m_{n}-1}{n} \leq x \quad \text { for some } x \in A
$$
Hence,
$$
x_{m} \leq y_{n} \quad \text { for all } m, n \in \mathbf{N} .
$$
It follows that, for any $m, n \in \mathbf{N}$, we have
$$
x_{n}-x_{m} \leq y_{m}-x_{m}=\frac{1}{m} \text { and } x_{m}-x_{n} \leq y_{n}-x_{n}=\frac{1}{n} .
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH3961 COURSE NOTES :


$x \in 5$
If $f$ and $g$ belong to $\mathcal{B}(S)$, there exist $M>0$ and $N>0$ such that
$$
\sup {x \in S}|f(x)| \leq M \text { and } \sup {x \in S}|g(x)| \leq N .
$$
It follows that $\sup {x \in S}|f(x)-g(x)|<\infty$. Indeed, $$ |f(x)-g(x)| \leq|f(x)|+|g(x)| \leq \sup {x \in S}|f(x)|+\sup {x \in S}|g(x)|, $$ and so $$ 0 \leq \sup {x \in S}|f(x)-g(x)| \leq M+N .
$$
Define
$$
d(f, g)=\sup _{x \in S}|f(x)-g(x)|, \quad f, g \in \mathcal{B}(S) .
$$















度量空间 Metric Spaces MA222-10

0

这是一份warwick华威大学MA222-10 的成功案例

度量空间 Metric Spaces MA222-10


By the LUB axiom, there exists $\ell \in \mathbb{R}$ which is sup $s$. We clamm that $\lim x_{n}=\ell$. Let $\varepsilon>0$ be given. As $\ell$ is an upper bound for $S$ and $x_{N}-\varepsilon / 2 \in S$ (by (i)) we infer that $x_{N}-\varepsilon / 2 \leq \ell$. Since $\ell$ is the least upper bound for $S$ and $x_{N}+\varepsilon / 2$ is an upper bound for $S$ (from (ii)) we see that $\ell \leq x_{N}+\varepsilon / 2$. Thus we have $x_{N}-\varepsilon / 2 \leq \ell \leq x_{N}+\varepsilon / 2$ or
$$
\left|x_{N}-\ell\right| \leq \varepsilon / 2
$$
For $n \geq N$ we have
$$
\begin{aligned}
\left|x_{n}-\ell\right| & \leq\left|x_{n}-x_{N}\right|+\left|x_{N}-\ell\right| \
&<\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$
We have thus shown that $\lim {n \rightarrow \infty} x{n}=\ell$.

英国论文代写Viking Essay为您提供作业代写代考服务

MA222-10  COURSE NOTES :

Let $A$ be a nonempty subset of a metric space $(X, d)$. Define
$$
d_{A}(x):=\inf {d(x, a): a \in A}, \quad x \in X .
$$
Then $d_{A}$ is continuous. (Geometrically, we think of $d_{A}(x)$ as the distance of $x$ to $A$.)

We give a proof even though it is easy, because of the importance of this result. Let $x, y \in X$ and $a \in A$ be arbitrary. We have, from the triangle inequality $d(a, x) \leq d(a, y)+d(y, x)$,
$$
\begin{aligned}
&d(a, y) \geq d(a, x)-d(y, x) \
&d(a, y) \geq d_{A}(x)-d(y, x)
\end{aligned}
$$
since $d(a, x) \geq \inf \left{d\left(a^{\prime}, x\right): a^{\prime} \in A\right}:=d_{A}(x)$. The inequality says that $d_{A}(x)-d(y, x)$ is a lower bound for the set ${d(a, y): a \in A}$. Hence the greatest lower bound of this set, namely, $\inf {d(a, y)=a \in \backslash A} n d$ is greater than or equal to this lower bound, that is,
$$
d_{A}(y) \geq d_{A}(x)-d(y, x)
$$










度量空间 Metric Spaces MATH20122

0

这是一份manchester曼切斯特大学 MATH20122作业代写的成功案例

度量空间 Metric Spaces MATH20122
问题 1.

Let $k \in[0,1)$ be a Lipschitz constant for $f$. For each $a, b \in X$, we have the inequality $d(f(a), f(b)) \leq k d(a, b)$, and it follows using induction that $d\left(f^{n}(a), f^{n}(b)\right) \leq k^{n} d(a, b)$ for all $n \in \mathbb{N}$. But because $k \in[0,1), k^{n} \rightarrow 0$, so that $d\left(f^{n}(a), f^{n}(b)\right) \rightarrow 0$ also. This proves (i).

For (ii), we invoke our knowledge of real series. Suppose $x \in X$. Let $\epsilon \in \mathbb{R}^{+}$ be arbitrary. Let $m \in \mathbb{N}$ be such that $k^{m} d(x, f(x))<(1-k) \epsilon$. Then, for all

证明 .

$n \in \mathbb{N}$ we have, using induction and the triangle inequality,
$d\left(f^{m}(x), f^{m+n}(x)\right) \leq k^{m} d\left(x, f^{n}(x)\right) \leq k^{m} \sum_{i=1}^{n} d\left(f^{i-1}(x), f^{i}(x)\right)$
$\leq k^{m} d(x, f(x)) \sum_{i=0}^{n-1} k^{i}$
$\leq \frac{k^{m}}{1-k} d(x, f(x))<\epsilon .$
So the ball $b\left[f^{m}(x) ; \epsilon\right)$ includes the $m$ th tail of $\left(f^{n}(x)\right)$. Since $\epsilon$ is arbitrary in $\mathbb{R}^{+}$, this establishes that $\left(f^{n}(x)\right)$ is a Cauchy sequence.


英国论文代写Viking Essay为您提供作业代写代考服务

MATH20122 COURSE NOTES :

Suppose first that $P$ is complete, that $i \in \mathbb{N}{n}$ and that $\left(x{i, m}\right){m \in \mathbb{N}}$ is a Cauchy sequence in $X{i}$. For each $j \in \mathbb{N}{n} \backslash{i}$, let $a{j} \in X_{j}$. For each $m \in \mathbb{N}$, let $z_{m} \in P$ be given by $\pi_{i}\left(z_{m}\right)=x_{i, m}$ and $\pi_{j}\left(z_{m}\right)=a_{j}$ for each $j \in \mathbb{N}{n} \backslash{i}$. Then $\left(z{m}\right)$ is Cauchy in $P(6.10 .1)$ and so converges in $P(10.2 .1)$. Then $\left(\pi_{i}\left(z_{m}\right)\right)$ – that is $\left(x_{i, m}\right)$-converges in $X_{i}(6.5 .1)$. So $X_{i}$ is complete by 10.2.1. This proves the forward implication; the backward implication is easier using the same tools.