非线性ODEs与应用|MATH3063 Nonlinear ODEs with Applications代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3063的成功案例

非线性ODEs与应用|MATH3063 Nonlinear ODEs with Applications代写 Sydney代写


To illustrate the result in and compare it with the control law resulting from standard backstepping, consider the two-dimensional system
$$
\begin{aligned}
&\dot{x}{1}=-x{1}+\lambda x_{1}^{3} x_{2}, \
&\dot{x}{2}=u . \end{aligned} $$ A backstepping-based stabilising control law is $$ u=-\lambda x{1}^{4}-x_{2},
$$
whereas a direct application of the procedure described in the proof of Proposition $2.1$ shows that the I\&I stabilising control law is
$$
u=-\left(2+x_{1}^{8}\right) x_{2} .
$$
The latter does not require the knowledge of the parameter $\lambda$, however, it is in general more aggressive because of the higher power in $x_{1}$.
As a second example consider the system
$$
\begin{aligned}
&\dot{x}{1}=A(\theta) x{1}+F\left(x_{1}, x_{2}\right) x_{2}, \
&\dot{x}_{2}=u
\end{aligned}
$$




英国论文代写Viking Essay为您提供作业代写代考服务

MATH3063 COURSE NOTES :


and the problem of constructing a (reduced-order) observer for the unmeasured state $\eta$. In an attempt to apply the methodology in [12], rewrite the system in the form
$$
\begin{aligned}
&\dot{\eta}=A_{1} \eta+G_{1} \gamma(\eta)+u, \
&\dot{y}=A_{2} \eta+G_{2} \gamma(\eta)-y
\end{aligned}
$$
where $\gamma(\eta)=\left[\eta^{3}, \eta+\eta^{2}+\eta^{3}\right]^{\top}$ satisfies the monotonicity condition, and $A_{1}=-1, G_{1}=[-1,1], A_{2}=1$, and $G_{2}=[1,0]$. Defining the error $z=\xi+B y-\eta$ and the observer dynamics
$$
\dot{\xi}=\left(A_{1}-B A_{2}\right)(\xi+B y)+\left(G_{1}-B G_{2}\right) \gamma(\xi+B y)+u+B y
$$
yields the error system
$$
\dot{z}=\left(A_{1}-B A_{2}\right) z+\left(G_{1}-B G_{2}\right)(\gamma(\eta+z)-\gamma(\eta))
$$
which has an asymptotically stable equilibrium at zero if there exist constants $\nu_{1}>0, \nu_{2}>0$ and $B$ such that ${ }^{11}$
$$
A_{1}-B A_{2} \leq 0, \quad G_{1}-B G_{2}=\left[-\nu_{1},-\nu_{2}\right] .
$$
It can be readily seen that the last condition cannot be satisfied, since it requires $\nu_{2}=-1$.
















度量空间|MATH3961 Metric Spaces代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3961的成功案例

度量空间|MATH3961 Metric Spaces代写 Sydney代写


and also,
$$
x_{n}=y_{n}-\frac{1}{n}=\alpha+\frac{m_{n}-1}{n} \leq x \quad \text { for some } x \in A
$$
Hence,
$$
x_{m} \leq y_{n} \quad \text { for all } m, n \in \mathbf{N} .
$$
It follows that, for any $m, n \in \mathbf{N}$, we have
$$
x_{n}-x_{m} \leq y_{m}-x_{m}=\frac{1}{m} \text { and } x_{m}-x_{n} \leq y_{n}-x_{n}=\frac{1}{n} .
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH3961 COURSE NOTES :


$x \in 5$
If $f$ and $g$ belong to $\mathcal{B}(S)$, there exist $M>0$ and $N>0$ such that
$$
\sup {x \in S}|f(x)| \leq M \text { and } \sup {x \in S}|g(x)| \leq N .
$$
It follows that $\sup {x \in S}|f(x)-g(x)|<\infty$. Indeed, $$ |f(x)-g(x)| \leq|f(x)|+|g(x)| \leq \sup {x \in S}|f(x)|+\sup {x \in S}|g(x)|, $$ and so $$ 0 \leq \sup {x \in S}|f(x)-g(x)| \leq M+N .
$$
Define
$$
d(f, g)=\sup _{x \in S}|f(x)-g(x)|, \quad f, g \in \mathcal{B}(S) .
$$















几何学和拓扑学|MATH3061 Geometry and Topology代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3061的成功案例

几何学和拓扑学|MATH3061 Geometry and Topology代写 Sydney代写



$$
\phi_{s}(r, \varepsilon)=\left(s r s, \varepsilon(-1)^{s(s, r)}\right) \text {, }
$$
where $\delta(s, r)$ is the Kronecker delta. It is clear that $\left(\phi_{s}\right)^{2}$ is the identity map; hence, $\phi_{s}$ is a bijection. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$. Put $v=s_{k} \cdots s_{1}$ and $\phi_{\mathrm{s}}=$ $\phi_{s_{2}} \circ \cdots \circ \phi_{s_{1}}$. We claim that
$$
\phi_{\mathbf{s}}(r, \varepsilon)=\left(v r v^{-1}, \varepsilon(-1)^{n(\mathbf{s}, r)}\right) .
$$
The proof is by induction on $k$. The case $k=1$ is trivial. Suppose $k>1$, set $\mathbf{s}^{\prime}=\left(s_{1}, \ldots, s_{k-1}\right), u=s_{k-1} \cdots s_{1}$, and suppose, by induction, that the claim holds for $\mathbf{s}^{\prime}$. Then
$$
\begin{aligned}
\phi_{s}(r, \varepsilon) &=\phi_{s_{k}}\left(u r u^{-1}, \varepsilon(-1)^{n\left(s^{\prime}, r\right)}\right) \
&=\left(v r v^{-1}, \varepsilon(-1)^{n\left(s^{\prime}, r\right)+d\left(s_{k} \cdot \Delta n u^{-1}\right)}\right)
\end{aligned}
$$
Put $\Phi(\mathbf{s})=\left(r_{1}, \ldots, r_{k}\right)$. Since $r_{k}=\left(s_{1} \cdots s_{k-1}\right) s_{k}\left(s_{k-1} \cdots s_{1}\right)=u^{-1} s_{k} u$, we have $\Phi(\mathbf{s})=\left(\Phi\left(\mathbf{s}^{\prime}\right), u^{-1} s_{k} u\right)$. Hence, $n(\mathbf{s}, r)=n\left(\mathbf{s}^{\prime}, r\right)+\delta\left(u^{-1} s_{k} u, r\right)$, proving the claim.



英国论文代写Viking Essay为您提供作业代写代考服务

MATH3061 COURSE NOTES :


For any coset $a=g B \in G / B$, let $a X:=g X$. For any subset $A$ of $G / B$, define a subspace $A X$ of $\mathcal{U}(W, X)$ to be the corresponding union of chambers:
$$
A X:=\bigcup_{a \in A} a X .
$$
Given a point $x \in X$, set
$$
C_{x}:=\bigcup_{s \mid S(x)} X_{s} \text { and } V_{x}:=X-C_{x} \text {. }
$$
Since $\left(X_{s}\right){s e s}$ is a locally finite family of closed subspaces of $X$, each $C{x}$ is closed and each $V_{x}$ is open. Consequently, $G_{S(x)} V_{x}$ is an open neighborhood of $[1, x]$ in $\mathcal{U}(G, X)$.















环、场和伽罗瓦理论|MATH3962 Rings, Fields and Galois Theory代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3962的成功案例

环、场和伽罗瓦理论|MATH3962 Rings, Fields and Galois Theory 代写 Sydney代写


Let $p$ be a prime number. Then
$$
F_{p}(X)=\frac{X^{p}-1}{X-1}=1+X+\cdots+X^{p-1}
$$
and more generally
$$
F_{p^{m}}(X)=\frac{X^{p^{m}}-1}{X p^{m-1}-1}=1+X^{p^{m-1}}+\cdots+X^{(p-1) p^{m-1}}
$$
in particular, then,
$$
\varphi\left(p^{m}\right)=(p-1) p^{m-1}=p^{m}-p^{m-1}
$$




英国论文代写Viking Essay为您提供作业代写代考服务

MATH3962 COURSE NOTES :


Let $G$ act on $M$ and take $x \in M$. The subgroup
$$
G_{x}={\sigma \in G \mid \sigma x=x}
$$
is called the stabilizer of $x$.
F4. Let $G$ act on $M$ and take $x \in M$. The map
$$
G \rightarrow G x, \quad \sigma \mapsto \sigma x
$$
defines a bijection $i: G / G_{X} \rightarrow G x$. Thus, if $G x$ is finite, so is $G: G_{X}$, and
$$
|G x|=G: G_{X} .
$$
If $G$ is finite, so is $G x$, and
$$
|G x|=\frac{|G|}{\left|G_{x}\right|} ;
$$
in particular then the size of any orbit divides the order of $G$.















科学跨学科项目|SCPU3001 Science Interdisciplinary Project代写 Sydney代写

0

这是一份Sydney悉尼大学SCPU3001的成功案例

科学跨学科项目|SCPU3001 Science Interdisciplinary Project代写 Sydney代写


Suppose $\left(\left[4: e_{4}^{}\right],\left[5: e_{5}^{}\right]\right)$ is not an arc in $N_{4}\left(L_{5}^{}\right) . X^{}$ being the characteristic vector of a pedigree, implies that $e_{4}^{} \in G\left(e_{5}^{}\right)$. So this arc exists in $F_{4}$ with capacity $x_{4}\left(e_{4}^{}\right)>0$. We shall show that $F_{4}$ is feasible. Since $X^{}$ is active for $X / 6$ we have a $r \in I(\lambda)$ such that $X^{*}=X^{r}$, for some $\lambda \in \Lambda_{6}(X)$. Consider the $F A T$ problem induced by $(\lambda, 4)$. So we have the instant flow $f$ that is feasible for this $F A T$ problem. From feasibility of $f$, we have
$$
\begin{aligned}
&\sum_{s} f_{q s}=x_{4}\left(e_{q}\right),\left[4: e_{q}\right] \in V_{[1]} \
&\sum_{q} f_{q u}=x_{5}\left(e_{s}\right),\left[5: e_{s}\right] \in V_{[2]}
\end{aligned}
$$
Recall that in $F_{4}$ the capacity of any arc, $\left([4: e],\left[5: e^{7}\right]\right)$ is defined to be $x_{4}(e)$. We see from equation $6.11$ that $f$ meets these capacity restrictions. Thus, from equations $6.11$ and the observation made above, we have shown that $f$, the instant flow, is feasible for $F_{4}$.



英国论文代写Viking Essay为您提供作业代写代考服务

SCPU3001 COURSE NOTES :


Thus,
$$
U^{k-3}(e)=\sum_{r \in I(\lambda) \cap J} \lambda_{r} T^{r} .
$$
Now partition $I(\lambda)$ with respect to $\mathbf{x}{k}^{r}$ as follows: Let $I{\alpha}$ denote the subset of $I(\lambda)$ with $x_{k}^{r}\left(e_{\alpha}\right)=1$.
$$
\sum_{r \in I_{a}} \lambda_{r}=x_{k}\left(e_{\alpha}\right), \text { for } e_{\alpha} \in E_{k}
$$















数学领域的项目|MATH3888 Projects in Mathematics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3888的成功案例

数学领域的项目|MATH3888 Projects in Mathematics代写 Sydney代写


The amplitude $\hat{u}{k}$ is solution of the ODE: $$ \frac{d \hat{u}{k}}{d t}+\kappa\left(\frac{k \pi}{\ell}\right)^{2} \hat{u}{k}=0 $$ and has the analytical form $$ \hat{u}{k}(t)=A_{k} \exp \left(-\left(\frac{k \pi}{\ell}\right)^{2} \kappa t\right)
$$
We can easily check that any elementary wave $\hat{u}{k}(t) \phi{k}(x)$ is a solution of the heat equation, but it does not satisfy the boundary conditions (1.54). This is the reason why a linear function of $x$ (which is a also a solution of the heat equation) has been added to obtain the final form of the exact solution (1.59).
We note that this is allowed by the linearity of the heat equation.
Finally, the coefficients $A_{k}$ are calculated using the orthogonality of $\phi_{k}$ functions:
$$
A_{k}=-\frac{2 u_{s}}{\ell} \int_{0}^{l}\left(1-\frac{x}{\ell}\right) \sin \left(\frac{k \pi}{\ell} x\right) d x=-\frac{2 u_{s}}{k \pi}
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH3888 COURSE NOTES :

Interpolation. The polynomial $p_{n}$ and the function $f$ coincide at $n+1$ points $x_{0}, \ldots, x_{n}$ of the interval $[a, b]$. These points can be prescribed or be some unknowns of the problem.
Best approximation. The polynomial $p_{n}$ is the element (or one element) of $\mathbb{P}{n}$ (if it exists) that is closest to $f$ with respect to some given norm |.|. More precisely, $$ \left|f-p{n}\right|=\inf {q \in \mathbb{P}{n}}|f-q|
$$
If the norm is
$$
|\varphi|_{2}=\sqrt{\int_{a}^{b}|\varphi(x)|^{2} d x}
$$
the approximation is called least squares approximation or approximation in the $L^{2}$ sense or Hilbertian approximation. The norm of the uniform convergence (the supremum norm), which we denote by
$$
|\varphi|_{\infty}=\sup _{x \in[a, b]}|\varphi(x)|
$$
leads to the approximation in the uniform sense or approximation in the $L^{\infty}$ sense or Chebyshev approximation.















数论和密码学|MATH2088/MATH2988 Number Theory and Cryptography代写 Sydney代写

0

这是一份Sydney悉尼大学MATH2088/MATH2988的成功案例

数论和密码学|MATH2088/MATH2988 Number Theory and Cryptography代写 Sydney代写


In particular, we get
$$
\sqrt{a^{2}+1}=[a ; 2 a, 2 a, \ldots]=[a, \overline{2 a}]
$$
where $\overline{2 a}$ means that the continued fraction is periodic, that is to say, $2 a$ is repeated infinitely many times. The case of $\sqrt{2}$ corresponds to putting $a=1$ and $b=1$.
Here follow some more examples.
$$
\sqrt{3}=[1 ; \overline{1,2}], \quad \sqrt{5}=[2 ; \overline{4}], \quad \sqrt{10}=[3 ; \overline{6}]
$$
while the golden ratio has a truly perfect representation as a continued fraction:
$$
\frac{\sqrt{5}+1}{2}=[1 ; 1,1,1, \ldots]
$$
Before going on, we must attribute a meaning to the concept of continued fraction with infinitely many terms. We begin by giving the following definition.



英国论文代写Viking Essay为您提供作业代写代考服务

MATH2023/MATH2923 COURSE NOTES :

Write $\sqrt{6}$ as a continued fraction.
Put $a_{1}=[\sqrt{6}]=2$. Consequently, define
$$
\alpha_{2}=\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{2}, \quad a_{2}=\left[\alpha_{2}\right]=2
$$
and successively
$$
\begin{array}{ll}
\alpha_{3}=\frac{1}{\frac{\sqrt{6}+2}{2}-2}=\sqrt{6}+2, & a_{3}=\left[\alpha_{3}\right]=4 \
\alpha_{4}=\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{2}, & a_{4}=\left[\alpha_{3}\right]=2
\end{array}
$$
and so forth. Hence,
$$
\sqrt{6}=[2 ; 2,4,2,4, \ldots]=[2, \overline{2,4}]
$$















数学分析|MATH2023/MATH2923 Analysis代写 Sydney代写

0

这是一份Sydney悉尼大学MATH2023/MATH2923的成功案例

数学分析|MATH2023/MATH2923 Analysis代写 Sydney代写


We have
$$
\Phi_{p}(f)=|\Omega|^{-\frac{1}{p}}|f|_{L^{p}(\Omega)} .
$$
By corollary $\Phi_{p}(f)$ viewed as a function of $p$ is increasing with
$$
\Phi_{p}(f) \leq|f|_{L^{\infty}(\Omega)}
$$ that
$$
|f|_{L^{\infty}(\Omega)} \leq \lim {p \rightarrow \infty} \Phi{p}(f)
$$
For $K \in \mathbf{R}$ let
$$
A_{K}:={x \in \Omega|| f(x) \mid \geq K} .
$$
The set $A_{k}$ is measureable since $f$ is and $\left|A_{K}\right|>0$ if $K<|f|_{L^{\infty}(\Omega)}$. Moreover,
$$
\Phi_{p}(f) \geq|\Omega|^{-\frac{1}{p}}\left(\int_{A_{K}}|f(x)|^{p} d x\right)^{1 / p} \geq|\Omega|^{-\frac{1}{p}}\left|A_{K}\right|^{\frac{1}{p}} K .
$$
Passing to the limit $p \rightarrow \infty$ we obtain
$$
\lim {p \rightarrow \infty} \Phi{p}(f) \geq K
$$
Because this holds for all $K<|f|_{L^{\infty}(\Omega)}$ we conclude
$$
\lim {p \rightarrow \infty} \Phi{p}(f) \geq|f|_{L^{\infty}(\Omega)}
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH2023/MATH2923 COURSE NOTES :

Let $\left(f_{k}\right){k \in \mathrm{N}} \subset L^{P}(\Omega)$ be a Cauchy sequence. It suffices to show that $\left(f{k}\right)$ has a convergent subsequence. For every $i \in \mathrm{N}$ there is an integer $N_{i}$ so that
$$
\left|f_{n}-f_{m}\right|_{L P(\Omega)} \leq 2^{-i} \text { whenever } n, m \geq N_{i} .
$$
We construct a subsequence $\left(f_{k_{i}}\right) \subset\left(f_{k}\right)$ so that
$$
\left|f_{k_{i+1}}-f_{k_{i}}\right|_{L P(\Omega)} \leq 2^{-i}
$$
by setting $k_{i}:=\max \left{i, N_{i}\right}$. In order to simplify notation we will from now on assume that
$$
\left|f_{k+1}-f_{k}\right|_{L F(\Omega)} \leq 2^{-k}
$$
so that
$$
M:=\sum_{k \in \mathbf{N}}\left|f_{k+1}-f_{k}\right|_{L^{p}(\Omega)}<\infty
$$















单变量微积分|MATH1931 Calculus Of One Variable (SSP)代写 Sydney代写

0

这是一份Sydney悉尼大学MATH1931的成功案例

单变量微积分|MATH1931 Calculus Of One Variable (Advanced) sydney代写


Let $[a, b] \subseteq[-\infty, \infty]$ and suppose $f, g$ are functions which satisfy,
$$
\lim {x \rightarrow b-} f(x)=\pm \infty \text { and } \lim {x \rightarrow b-} g(x)=\pm \infty,
$$
and $f^{\prime}$ and $g^{\prime}$ exist on $(a, b)$ with $g^{\prime}(x) \neq 0$ on $(a, b)$. Suppose also
$$
\lim {x \rightarrow b-} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L $$ Then $$ \lim {x \rightarrow b-} \frac{f(x)}{g(x)}=L
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH1931 COURSE NOTES :

If
$$
w \neq 0, \theta=\frac{-\left|w^{k}\right|\left|c_{k}\right|}{w^{k} c_{k}}
$$
and if $w=0, \theta=1$ will work. Now let $\eta^{k}=\theta$ so $\eta$ is a $k^{\text {th }}$ root of $\theta$ and let $t$ be a small positive number.
$$
q(t \eta w) \equiv 1-t^{k}|w|^{k}\left|c_{k}\right|+\cdots+c_{n} t^{n}(\eta w)^{n}
$$
which is of the form
$$
1-t^{k}|w|^{k}\left|c_{k}\right|+t^{k}(g(t, w))
$$
where $\lim {t \rightarrow 0} g(t, w)=0$. Letting $t$ be small enough this yields a contradiction to $|q(z)| \geq 1$ because eventually, for small enough $t$, $$ |g(t, w)|<|w|^{k}\left|c{k}\right| / 2
$$
and so for such $t$,
$$
|q(t \eta w)|<1-t^{k}|w|^{k}\left|c_{k}\right|+t^{k}|w|^{k}\left|c_{k}\right| / 2<1,
$$
This proves the theorem.













线性和抽象代数|MATH2022/MATH2922 Linear and Abstract Algebra代写 Sydney代写

0

这是一份Sydney悉尼大学MATH2022/MATH2922的成功案例

线性和抽象代数|MATH2022/MATH2922 Linear and Abstract Algebra代写 Sydney代写


Case 1: If $x=a^{i}$ and $y=a^{j}$, the commutator is trivial.
Case 2: If $x=a^{i}$ and $y=a^{j} b$, then $x y x^{-1} y^{-1}=a^{i} a^{j} b a^{-i} a^{j} b=a^{i} a^{j} a^{i} b a^{j} b=$ $a^{i} a^{j} a^{i} a^{-j} b^{2}=a^{2 i}$, and thus each even power of $a$ is a commutator.

Case 3: If $x=a^{j} b$ and $y=a^{i}$, we get the inverse of the element in Case $2 .$
Case 4: If $x=a^{i} b$ and $y=a^{j} b$, then $x y x^{-1} y^{-1}=a^{i} b a^{j} b a^{i} b a^{j} b$, and so we get $x y x^{-1} y^{-1}=a^{i} a^{-j} b^{2} a^{i} a^{-j} b^{2}=a^{2(i-j)}$, and again we get even powers of $a$.
If $n$ is odd, then the commutators form the subgroup $\langle a\rangle$. If $n$ is even, then the commutators form the subgroup $\left\langle a^{2}\right\rangle$.
(b) Show that the commutators of $\mathcal{D}{n}$ form a normal subgroup $N$ of $\mathcal{D}{n}$, and that $\mathcal{D}_{n} / N$ is abelian.

Solution: If $x=a^{2 i}$, then conjugation by $y=a^{j} b$ yields $y x y^{-1}=a^{j} b a^{2 i} a^{j} b=$ $a^{j} a^{-2 i} b^{2} a^{-j}=a^{-2 i}=x^{-1}$, which is again in the subgroup. It follows that the commutators form a normal subgroup. The corresponding factor group has order 2 or 4 , so it must be abelian.



英国论文代写Viking Essay为您提供作业代写代考服务

MATH2022/MATH2922 COURSE NOTES :

Let $N$ be a normal subgroup of a group $G$. Suppose that $|N|=5$ and $|G|$ is odd. Prove that $N$ is contained in the center of $G$.

Solution: Since $|N|=5$, the subgroup $N$ is cyclic, say $N=\langle a\rangle$. We want to show that $a$ has no other conjugates, so we first note that since $N$ is normal in $G$, any conjugate of $a$ must be in $N$. We next note that if $x$ is conjugate to $y$, which we will write $x \mathcal{S} y$, then $x^{n} \sim y^{n}$. Finally, we note that the number of conjugates of $a$ must be a divisor of $G$.
Case 1. If $a \sim a^{2}$, then $a^{2} \sim a^{4}$, and $a^{4} \sim a^{8}=a^{3}$.
Case 2. If $a \sim a^{3}$, then $a^{3} \sim a^{9}=a^{4}$, and $a^{4} \sim a^{12}=a^{2}$.
Case 3. If $a \sim a^{4}$, then $a^{2} \sim a^{8}=a^{3}$.
In the first two cases $a$ has 4 conjugates, which contradicts the assumption that $G$ has odd order. In the last case, $a$ has either 2 or 4 conjugates, which again leads to the same contradiction.