数学 Mathematics 1 MATHS1017_1

0

这是一份GLA格拉斯哥大学MATHS1017_1作业代写的成功案例

数学 Mathematics 1 MATHS1017_1
问题 1.

$2 x+3$ and $x-1$ are factors of $2 x^{4}+a x^{3}-3 x^{2}+b x+3$.
Find $a$ and $b$ and all zeros of the polynomial.
Since $2 x+3$ and $x-1$ are factors,
$2 x^{4}+a x^{3}-3 x^{2}+b x+3=(2 x+3)(x-1)($ a quadratic) $=\left(2 x^{2}+x-3\right)\left(x^{2}+c x-1\right)$ for some $c$
Equating coefficients of $x^{2}$ gives: $\quad-3=-2+c-3$
$\therefore c=2$

证明 .

Equating coefficients of $x^{3}: \quad a=2 c+1=4+1=5$
Equating coefficients of $x$ :
$$
\begin{aligned}
b &=-1-3 c \
\therefore \quad b &=-1-6=-7
\end{aligned}
$$
$\therefore \quad P(x)=(2 x+3)(x-1)\left(x^{2}+2 x-1\right)$ which has zeros of: $\quad-\frac{3}{2}, 1$ and $\frac{-2 \pm \sqrt{4-4(1)(-1)}}{2}=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}$
$\therefore$ the zeros are $-\frac{3}{2}, 1$ and $-1 \pm \sqrt{2}$.

英国论文代写Viking Essay为您提供作业代写代考服务

MATHS1017_1 COURSE NOTES :

Find $k$ given that $x-2$ is a factor of $x^{3}+k x^{2}-3 x+6$. Hence, fully factorise $x^{3}+k x^{2}-3 x+6$.
Let $P(x)=x^{3}+k x^{2}-3 x+6$
By the Factor theorem, as $x-2$ is a factor then $P(2)=0$
$$
\begin{aligned}
\therefore \quad(2)^{3}+k(2)^{2}-3(2)+6 &=0 \
\therefore 8+4 k &=0 \quad \text { and so } k=-2
\end{aligned}
$$
Now $x^{3}-2 x^{2}-3 x+6=(x-2)\left(x^{2}+a x-3\right)$ for some constant $a$.
Equating coefficients of $x^{2}$ gives: $\quad-2=-2+a \quad$ i.e., $a=0$
Equating coefficients of $x$ gives: $\quad-3=-2 a-3 \quad$ i.e., $\quad a=0$
$$
\begin{aligned}
\therefore x^{3}-2 x^{2}-3 x+6 &=(x-2)\left(x^{2}-3\right) \
&=(x-2)(x+\sqrt{3})(x-\sqrt{3})
\end{aligned}
$$
$$
\therefore P(2)=4 k+8 \quad \text { and since } \quad P(2)=0, \quad k=-2
$$
Now $P(x)=(x-2)\left(x^{2}+[k+2] x+[2 k+1]\right)$
$$
\begin{aligned}
&=(x-2)\left(x^{2}-3\right) \
&=(x-2)(x+\sqrt{3})(x-\sqrt{3})
\end{aligned}
$$









数学 Mathematics 2 ME10305

0

这是一份BATH巴斯大学ME10305作业代写的成功案例

数学 Mathematics 2 ME10305
问题 1.

$f^{\prime}(x)$ and $g^{\prime}(x)$ exist near, but not necessarily at, $a$. Then, if
$$
f^{\prime}(x) / g^{\prime}(x)
$$
tends to a limit $\lambda$ as $x \rightarrow a$, the limit of $f(x) / g(x)$ exists and equals $\lambda$ also.
By Cauchy’s formula, if $a<z_{1}<x$,
$$
\frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}\left(z_{1}\right)}{g^{\prime}\left(z_{1}\right)}
$$

证明 .

Hence, assuming the limit in question exists,
$$
\lim {x \rightarrow a+0} \frac{f(x)}{g(x)}=\lim {z_{1} \rightarrow a+0} \frac{f^{\prime}\left(z_{1}\right)}{g^{\prime}\left(z_{1}\right)}=\lambda
$$
Here it has been assumed that $x>a$ and so only the right-hand limits have been taken-the point $a$ being approached from above.
If $x<a$, that is if $x<z_{2}<a$, a similar argument yields
$$
\lim {x \rightarrow a-0} \frac{f(x)}{g(x)}=\lim {z_{x} \rightarrow a-0} \frac{f^{\prime}\left(z_{2}\right)}{g^{\prime}\left(z_{2}\right)}=\lambda
$$
where left-hand limits have been taken.

英国论文代写Viking Essay为您提供作业代写代考服务

ME10305 COURSE NOTES :

Complex numbers were introduced first by Cardan in his examination of the solutions of cubic equations. Hence, consider the cubic equation $x^{3}-1=0$. This may be written
$$
(x-1)\left(x^{2}+x+1\right)=0 .
$$
Hence, the roots of the original cubic equation are $x=1$ and the roots of the quadratic equation
$$
x^{2}+x+1=0
$$
and the roots of this equation are
$$
x=1 / 2(-1 \pm V-3)
$$








应用数学入门 Introduction to Applied Mathematics MAT00003C

0

这是一份YORK约克大学MAT00003C作业代写的成功案例

应用数学入门 Introduction to Applied Mathematics MAT00003C
问题 1.

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field $K$ and let $I$ be a monomial ideal of $R$ generated by a finite set of monomials $\left{x^{v_{1}}, \ldots, x^{v_{q}}\right}$. As usual we use $x^{a}$ as an abbreviation for $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, where $a=\left(a_{1}, \ldots, a_{n}\right)$ is in $\mathbb{N}^{n}$. The three central objects of study here are the following blowup algebras: (a) the Rees algebra
$$
R[I t]:=R \oplus I t \oplus \cdots \oplus I^{i} t^{i} \oplus \cdots \subset R[t],
$$
where $t$ is a new variable, (b) the associated graded ring
$$
\operatorname{gr}{I}(R):=R / I \oplus I / I^{2} \oplus \cdots \oplus I^{i} / I^{i+1} \oplus \cdots \simeq R[I t] \otimes{R}(R / I),
$$

证明 .

with multiplication
$$
\left(a+I^{i+1}\right)\left(b+I^{j+1}\right)=a b+I^{i+j+1} \quad\left(a \in I^{i}, b \in I^{j}\right),
$$
and (c) the symbolic Rees algebra
$$
R_{s}(I):=R+I^{(1)} t+I^{(2)} t^{2}+\cdots+I^{(t)} t^{i}+\cdots \subset R[t],
$$
where $I^{(i)}$ is the ith symbolic power of $I$.

英国论文代写Viking Essay为您提供作业代写代考服务

MAT00003C COURSE NOTES :

Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field $k$. Suppose $M=x_{1} a_{1} \ldots x_{n} a_{n}$ is a monomial in $R$. Then we define the polarization of $M$ to be the square-free monomial
$$
\mathscr{P}(M)=x_{1,1} x_{1,2} \ldots x_{1, a_{1}} x_{2,1} \ldots x_{2, a_{2}} \ldots x_{n, 1} \ldots x_{n, a_{n}}
$$
in the polynomial ring $S=k\left[x_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq a_{i}\right]$.
If $I$ is an ideal of $R$ generated by monomials $M_{1}, \ldots, M_{q}$, then the polarization of $I$ is defined as:
$$
P(I)=\left(P\left(M_{1}\right), \ldots, P\left(M_{q}\right)\right)
$$








实分析 Real Analysis MAT00005C

0

这是一份YORK约克大学MAT00004C作业代写的成功案例

实分析 Real Analysis MAT00005C
问题 1.

{Condition (b) is Riemann’s original formulation of integrability. 1 }
(a) $\Rightarrow$ (b): Assuming $f$ is Riemann-integrable, let
$$
\lambda=\int_{a}^{b} f
$$

证明 .

For each $\nu=1, \ldots, n$, choose a sequence $\left(x_{\nu}^{k}\right)$ in $\left[a_{\nu-1}, a_{\nu}\right]$ such that
$$
f\left(x_{\nu}^{k}\right) \rightarrow M_{\nu} \text { as } k \rightarrow \infty
$$
then
$$
\sum_{\nu=1}^{n} f\left(x_{\nu}^{k}\right) e_{\nu} \rightarrow \sum_{\nu=1}^{n} M_{\nu} e_{\nu}=S(\sigma)
$$
so by $()$ we have (*)
$$
\lambda-\epsilon \leq S(\sigma) \leq \lambda+\epsilon .
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MAT00005C COURSE NOTES :

Similarly,
$$
\lambda-\epsilon \leq s(\sigma) \leq \lambda+\epsilon \text {; }
$$
thus $S(\sigma)$ and $s(\sigma)$ both belong to the interval $[\lambda-\epsilon, \lambda+\epsilon]$, therefore
$$
W_{f}(\sigma)=S(\sigma)-s(\sigma) \leq 2 \epsilon .
$$
This proves that $f$ is Riemann-integrable and since
$$
S(\sigma) \rightarrow \int_{a}^{b} f \text { as } \mathrm{N}(\sigma) \rightarrow 0,
$$
it is clear from $\left({ }^{* *}\right)$ that
$$
\lambda=\int_{a}^{b} f . \diamond
$$








概率与统计学简介 Introduction to Probability & Statistics MAT00004C

0

这是一份YORK约克大学MAT00004C作业代写的成功案例

概率与统计学简介 Introduction to Probability & Statistics MAT00004C
问题 1.

We know from integral calculus that for $0 \leq a \leq b \leq 1$
$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} \frac{1}{2 \sqrt{x}} \mathrm{~d} x=\sqrt{b}-\sqrt{a}
$$
Hence $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{1} 1 /(2 \sqrt{x}) \mathrm{d} x=1$ (so $f$ is a probability density function-nonnegativity being obvious), and

证明 .

\begin{aligned}
\mathrm{P}\left(10^{-4} \leq X \leq 10^{-2}\right) &=\int_{10^{-4}}^{10^{-2}} \frac{1}{2 \sqrt{x}} \mathrm{~d} x \
&=\sqrt{10^{-2}}-\sqrt{10^{-4}}=10^{-1}-10^{-2}=0.09
\end{aligned}

英国论文代写Viking Essay为您提供作业代写代考服务

MAT00004C COURSE NOTES :

Suppose $U$ has a $U(0,1)$ distribution. To construct a $\operatorname{Ber}(p)$ random variable for some $0<p<1$, we define
$$
X= \begin{cases}1 & \text { if } U<p \ 0 & \text { if } U \geq p\end{cases}
$$
so that
$$
\begin{aligned}
&\mathrm{P}(X=1)=\mathrm{P}(U<p)=p \
&\mathrm{P}(X=0)=\mathrm{P}(U \geq p)=1-p
\end{aligned}
$$
This random variable $X$ has a Bernoulli distribution with parameter $p$.
QUICK EXERCISE 6.2 A random variable $Y$ has outcomes 1,3 , and 4 with the following probabilities: $\mathrm{P}(Y=1)=3 / 5, \mathrm{P}(Y=3)=1 / 5$, and $\mathrm{P}(Y=4)=$ 1/5. Describe how to construct $Y$ from a $U(0,1)$ random variable.








数学技能 I: 推理与交流 Mathematical Skills I: Reasoning & Communication MAT00011C

0

这是一份YORK约克大学MAT00011C作业代写的成功案例

数学技能 I: 推理与交流 Mathematical Skills I: Reasoning & Communication MAT00011C
问题 1.

the problem was $\frac{10^{2}}{10^{5}}$. Both bases have positive indices so to divide, we subtract the indices. Therefore
$$
\frac{10^{2}}{10^{5}}=10^{2-5}
$$

证明 .

We cannot normally subtract 5 from 2 , but, just as we have negative indices, we can subtract and have a negative or minus result as an answer, We say that $2-5=-3$. Check it the long way:
$$
\frac{10^{2}}{10^{5}}=\frac{100}{100000}=\frac{1}{1000} \text { or } 10^{-3}
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MAT00011C COURSE NOTES :

We have now worked out that:
$$
10^{2} \div 10^{4}=10^{-2}
$$
If you are told that:
$$
10^{-4} \div 10^{2}=10^{-6}
$$
and that:
$$
10^{-3} \div 10^{2}=10^{-5}
$$
can you see that the subtractions of the indices of the dividing bases are as follows:
$$
\begin{aligned}
&10^{2} \div 10^{4}=10^{2-4}=10^{-2} \
&10^{-4} \div 10^{2}=10^{-4-2}=10^{-6} \
&10^{-3} \div 10^{2}=10^{-3-2}=10^{-5}
\end{aligned}
$$








代数 Algebra MAT00010C

0

这是一份YORK约克大学MAT00001C作业代写的成功案例

代数 Algebra MAT00010C
问题 1.

first box. Since the third box is formed from $x_{1}\left(\begin{array}{l}1 \ 3\end{array}\right)+x_{2}\left(\begin{array}{l}2 \ 1\end{array}\right)=\left(\begin{array}{l}6 \ 8\end{array}\right)$ and $\left(\begin{array}{l}2 \ 1\end{array}\right)$, and the determinant is unchanged by adding $x_{2}$ times the second column to the first column, the size of the third box equals that of the second. We have this.
$$
\left|\begin{array}{ll}
6 & 2 \
8 & 1
\end{array}\right|=\left|\begin{array}{ll}
x_{1} \cdot 1 & 2 \
x_{1} \cdot 3 & 1
\end{array}\right|=x_{1} \cdot\left|\begin{array}{ll}
1 & 2 \
3 & 1
\end{array}\right|
$$

证明 .

Solving gives the value of one of the variables.
$$
x_{1}=\frac{\left|\begin{array}{ll}
6 & 2 \
8 & 1
\end{array}\right|}{\left|\begin{array}{ll}
1 & 2 \
3 & 1
\end{array}\right|}=\frac{-10}{-5}=2
$$
The theorem that generalizes this example, Cramer’s Rule, is: if $|A| \neq 0$ then the system $A \vec{x}=\vec{b}$ has the unique solution $x_{i}=\left|B_{i}\right| /|A|$ where the matrix $B_{i}$ is formed from $A$ by replacing column $i$ with the vector $\vec{b}$. Exercise 3 asks for a proof.
For instance, to solve this system for $x_{2}$
$$
\left(\begin{array}{ccc}
1 & 0 & 4 \
2 & 1 & -1 \
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \
x_{2} \
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \
1 \
-1
\end{array}\right)
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MAT00010C COURSE NOTES :

Recall the definitions of the complex number addition
$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$
and multiplication.
$$
\begin{aligned}
(a+b i)(c+d i) &=a c+a d i+b c i+b d(-1) \
&=(a c-b d)+(a d+b c) i
\end{aligned}
$$








微积分 Calculus MAT00001C

0

这是一份YORK约克大学MAT00001C作业代写的成功案例

微积分 Calculus MAT00001C
问题 1.

This is
$$
\left[\left[\begin{array}{c}
R \circ g \
-Q \circ g \
P \circ g
\end{array}\right] \cdot\left[\left[\frac{\partial g}{\partial u}\right] \times\left[\frac{\partial g}{\partial v}\right]\right]\right] d u \wedge d v
$$
(The permutation of the $P, Q, R$ (and the minus sign) come from the way the $d x \wedge d y$ acts on a piece of surface normal to the $(d) z$ direction.)

证明 .

We can rewrite this as
$$
\left|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right|\left[\left[\begin{array}{c}
R \circ g \
-Q \circ g \
P \circ g
\end{array}\right] \cdot \hat{\boldsymbol{n}}[u, v]\right] \quad d u \wedge d v
$$
where $\hat{\boldsymbol{n}}[u, v]$ is the unit normal to the surface at $g\left[\begin{array}{l}u \ v\end{array}\right]$, and
$$
\left|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right|
$$
is the “area stretching factor”.
We have that
$$
\int_{g\left(I^{2}\right)} \omega
$$

英国论文代写Viking Essay为您提供作业代写代考服务

BMAT00001C COURSE NOTES :

is the limit of the sums of values of $\omega$ on small elements of the surface $g\left(I^{2}\right)$. Suppose $g$ takes a rectangle $\triangle u \times \triangle v$ in $I^{2}$ to a (small) piece of the surface. $\omega$ at $g\left[\begin{array}{l}u \ v\end{array}\right]$ is, say,
$$
P d x \wedge d y+Q d x \wedge d z+R d y \wedge d z
$$
and the unit normal to the surface is $\hat{\boldsymbol{n}}[u, v]$ (located at $\left.g\left[\begin{array}{l}u \ v\end{array}\right]\right)$.
Write $\hat{\boldsymbol{n}}[u, v]$ as
$$
\left[\begin{array}{l}
\hat{n} x \
\hat{n} y \
\hat{n} z
\end{array}\right]
$$








数学 Mathematics  G100

0

这是一份imperial帝国理工大学 G100作业代写的成功案例

数学 Mathematics  G100
问题 1.

Let $\mathbb{Q}(\sqrt{2})={a+b \sqrt{2}: a, b \in \mathbb{Q}}$ and define
$$
\begin{gathered}
(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2} \
\alpha(a+b \sqrt{2})=\alpha a+\alpha b \sqrt{2} \quad \text { for all } \alpha, a, b, c, d \in \mathbb{Q} .
\end{gathered}
$$


证明 .

Check that $\mathbb{Q}(\sqrt{2})$ with these operations forms a vector space over $\mathbb{Q}$.
Let $\operatorname{Map}(\mathbb{R}, \mathbb{R})$ denote the set of all mappings from $R$ into itself. An addition and a scalar multiplication can be defined on Map $(\mathbb{R}, \mathbb{R})$ by
$$
(f+g)(x)=f(x)+g(x)
$$
$(\alpha f)(x)=\alpha f(x) \quad$ for all $\alpha, x \in \mathbb{R}, \quad$ and all $f, g \in \operatorname{Map}(\mathbb{R}, \mathbb{R})$.
Show that $\operatorname{Map}(\mathbb{R}, \mathbb{R})$ together with these operations forms a vector space over $\mathbb{R}$.

英国论文代写Viking Essay为您提供作业代写代考服务

G100 COURSE NOTES :

$\operatorname{dim} \mathbb{R}^{n}=n ; \operatorname{dim} P_{n}=n+1 ; \operatorname{dim} M_{2,2}(\mathbb{R})=4 ; \operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$
If $W=\langle(1,1,-2),(2,1,-3),(-1,0,1),(0,1,-1)\rangle$ then $\operatorname{dim} W=2$, as we saw earlier that $(0,1,-1),(-1,0,1)$ is a basis for $W$.







纯粹数学和应用数学|Pure and Applied Mathematics代写 MT1003

0

这是一份andrews圣安德鲁斯大学 MT1003作业代写的成功案例

纯粹数学和应用数学|Pure and Applied Mathematics代写 MT1003
问题 1.

PROOF The norm-map $N$ on $A$ defined by the trace map $t r$ induces a group morphism on the invertible elements of $A$
$$
N: A^{}=G L_{d_{1}}(\mathbb{C}) \times \ldots \times G L_{d_{k}}(\mathbb{C}) \longrightarrow \mathbb{C}^{}
$$
that is, a character. Now, any character is of the following form, let $A_{i} \in$ $G L_{d_{i}}(\mathbb{C})$, then for $a=\left(A_{1}, \ldots, A_{k}\right)$ we must have
$$
N(a)=\operatorname{det}\left(A_{1}\right)^{m_{1}} \operatorname{det}\left(A_{2}\right)^{m_{2}} \ldots \operatorname{det}\left(A_{k}\right)^{m_{k}}
$$


证明 .

for certain integers $m_{i} \in \mathbb{Z}$. Since $N$ extends to a polynomial map on the whole of $A$ we must have that all $m_{i} \geq 0$. By polarization it then follows that
$$
t r(a)=m_{1} \operatorname{Tr}\left(A_{1}\right)+\ldots+m_{k} \operatorname{Tr}\left(A_{k}\right)
$$
and it remains to show that no $m_{i}=0$. Indeed, if $m_{i}=0$ then $t r$ would be the zero map on $M_{d_{i}}(\mathbb{C})$, but then we would have for any $a=(0, \ldots, 0, A, 0, \ldots, 0)$ with $A \in M_{d_{i}}(\mathbb{C})$ that
$$
\chi_{a}^{(n)}(t)=t^{n}
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MT1003 COURSE NOTES :


We claim that for all but finitely many values of $\epsilon$ we have $F_{e} \in \mathcal{O}(A)$. Indeed, we have seen that $F\left(V_{i}\right) \subset V_{i-1}$ where $V_{i}$ is defined as the subspace such that $A^{i}\left(V_{i}\right)=0$. Hence, $F\left(V_{1}\right)=0$ and therefore
$$
F_{\epsilon}\left(V_{1}\right)=(1-\epsilon) F+\epsilon A\left(V_{1}\right)=0
$$
Assume by induction that $F_{e}^{i}\left(V_{i}\right)=0$ holds for all $i<l$, then we have that
$$
\begin{aligned}
F_{e}^{l}\left(V_{l}\right) &=F_{e}^{l-1}((1-\epsilon) F+\epsilon A)\left(V_{l}\right) \
& \subset F_{e}^{l-1}\left(V_{l-1}\right)=0
\end{aligned}
$$
because $A\left(V_{l}\right) \subset V_{l-1}$ and $F\left(V_{l}\right) \subset V_{l-1}$. But then we have for all $l$ that
$$
r k F_{e}^{l} \leq \operatorname{dim} V_{l}=n-\left(a_{1}^{}+\ldots+a_{l}^{}\right)=r k A^{l} \stackrel{\text { def }}{=} r_{l}
$$