流体动力学|MATH4074 Fluid Dynamics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4074的成功案例

流体动力学|MATH4074 Fluid Dynamics代写 Sydney代写


问题 1.

$$
\frac{d}{d t}\left(\int_{\mathrm{CV}} \rho d V\right)-\rho_{1} A_{1} V_{1}-\rho_{2} A_{2} V_{2}=0
$$
Now if $A_{t}$ is the tank cross-sectional area, the unsteady term can be evaluated as follows:
$$
\frac{d}{d t}\left(\int_{\mathrm{CV}} \rho d V\right)=\frac{d}{d t}\left(\rho_{\mathrm{w}} A_{t} h\right)+\frac{d}{d t}\left[\rho_{a} A_{r}(H-h)\right]=\rho_{w} A_{t} \frac{d h}{d t}
$$

证明 .

The $\rho_{a}$ term vanishes because it is the rate of change of air mass and is zero because the air is trapped at the top. Substituting we find the change of water height
$$
\frac{d h}{d t}=\frac{\rho_{1} A_{1} V_{1}+\rho_{2} A_{2} V_{2}}{\rho_{w} A_{t}}
$$
Ans. (a)
For water, $\rho_{1}=\rho_{2}=\rho_{\mathrm{w}}$, and this result reduces to
$$
\frac{d h}{d t}=\frac{A_{1} V_{1}+A_{2} V_{2}}{A_{t}}=\frac{Q_{1}+Q_{2}}{A_{t}}
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4074 COURSE NOTES :

applies with one inlet and exit:
$$
\sum \mathbf{F}=m_{2} \mathbf{V}{2}-\dot{m}{1} \mathbf{V}{1}=\left(\rho{2} A_{2} V_{2}\right) \mathbf{V}{2}-\left(\rho{1} A_{1} V_{1}\right) \mathbf{V}{1} $$ The volume integral term vanishes for steady flow, but from conservation of mass in Example $3.3$ we saw that $$ \dot{m}{1}=\dot{m}{2}=\dot{m}=\text { const } $$ Therefore a simple form for the desired result is $$ \sum \mathbf{F}=m\left(\mathbf{V}{2}-\mathbf{V}_{1}\right)
$$
Ans.
This is a vector relation and is sketched.The term $\Sigma$ F represents the net force acting on the control volume due to all causes; it is needed to balance the change in momentum of the fluid as it tums and decelerates while passing through the control volume.



















流体动力学 Fluid Dynamics MATH262009/MATH262501

0

这是一份leeds利兹大学MATH262009/MATH262501作业代写的成功案例

流体动力学 Fluid Dynamics MATH262009/MATH262501
问题 1.

For $\beta \gg 1$ it seems logical to look for solutions in the form
$$
\begin{aligned}
\psi(x, y, \tilde{t}, \beta)=& \psi_{0}(x, y, \tilde{t})+\frac{1}{\beta} \psi_{1}(x, y, \tilde{t}) \
&+\frac{1}{\beta^{2}} \psi_{2}(x, y, \tilde{t})+\cdots
\end{aligned}
$$

证明 .

whose substitution in will yield a sequence of problems for $\psi_{0}, \psi_{1}$, etc. by comparing like orders in $\beta^{-1}$. The lowest order, or $\mathrm{O}(1)$, problem for $\psi_{0}$ is
$$
\frac{\partial}{\partial t}\left(\nabla^{2} \psi_{0}-F \psi_{0}\right)+\frac{\partial \psi_{0}}{\partial x}=0,
$$
whose solution can be written as a general superposition of Rossby waves. e.g.,
$$
\psi_{0}=\sum_{j} a_{j} \cos \theta_{j},
$$
where the range of the sum over the integral index $j$ is formally infinite, but where in fact only a finite number of the amplitudes $a_{j}$ may be different from zero. The phase of each wave is
$$
\theta_{j}=k_{j} x+l_{j} y-\sigma_{j} \tilde{t}+\phi_{j},
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH262009/MATH262501 COURSE NOTES :

the solution forced by the term $a_{m} a_{n} B\left(K_{m}, K_{n}\right) \cos \left(\theta_{m}+\theta_{n}\right)$. A periodic forced solution for $\psi_{1}$ may be sought in the form
$$
\psi_{1}=A_{1 m n} \sin \left(\theta_{m}+\theta_{n}\right)
$$
where $A_{1 m n}$ is determined by $(3.26 .11 \mathrm{~b})$ to be
$$
A_{1 m n}=\frac{a_{m} a_{n} B\left(K_{m}, K_{n}\right)}{\left(K_{m n}^{2}+F\right)\left(\omega_{m n}-\sigma_{m n}\right)} .
$$