伽罗瓦理论|Galois Theory代写6CCM326A

0

这是一份kcl伦敦大学学院 6CCM326A作业代写的成功案

伽罗瓦理论|Galois Theory代写6CCM326A
问题 1.

$$
b^{\prime}=a^{\prime} \sum_{i=1}^{p-1} \zeta^{i}=((p-3) / 4) \sum_{i=1}^{p-1} \zeta^{i}=((p-3) / 4)(-1)=-(p-3) / 4
$$
and then
$$
b=(p-1) / 2+b^{\prime}=(p-1) / 2-(p-3) / 4=(p+1) / 4
$$

证明 .

Now
$$
\begin{aligned}
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right) &=X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1} \
&=X^{2}+X+b,
\end{aligned}
$$
so
$$
\begin{array}{ll}
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)=X^{2}+X-(p-1) / 4 & \text { if } p \equiv 1(\bmod 4) \
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)=X^{2}+X+(p+1) / 4 & \text { if } p \equiv 3(\bmod 4)
\end{array}
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

6CCM326ACOURSE NOTES :

$$
\theta=\alpha_{1} Y_{1}+\cdots+\alpha_{n} Y_{n} \in \tilde{\mathbf{E}}
$$
and let
$$
F(Z)=\prod_{\tau^{\prime} \in S_{n}}\left(Z-\tau^{\prime}(\theta)\right) \in \tilde{\mathbf{E}}[Z]
$$
The polynomial $F(Z)$ is a symmetric function of its roots, so by Lemma its coefficients are functions of the elementary symmetric functions of its roots and hence of $Y_{1}, \ldots, Y_{n}$ and the coefficients of $f(X)$. Thus, $F(Z) \in$ $\tilde{\mathbf{F}}[Z]$. Now we may factor $F(Z)$ into a product of irreducibles in $\tilde{\mathbf{F}}[Z]$,
$$
F(Z)=F_{1}(Z) \cdots F_{t}(Z)
$$




概率论的基本原理|Fundamentals of Probability Theory代写 6CCM341A

0

这是一份kcl伦敦大学学院  6CCM341A作业代写的成功案

概率论的基本原理|Fundamentals of Probability Theory代写 6CCM341A
问题 1.

Note that for any random variable $y$, defined by $y=a r+b$, we may obtain $f_{v}^{T}(s)$ in terms of $f_{r}^{T}(s)$ from the definition of the $s$ transform as. follows:
$f_{\nu}{ }^{T}(s)=E\left(e^{-w}\right)=E\left(e^{-a-s^{-s} e^{-\infty}}\right)=e^{-\Delta t} \int_{-\infty}^{n} e^{-\operatorname{anv} f_{r}\left(r_{0}\right) d r_{0}}$
We may recognize the integral in the above equation to obtain $f_{y}^{T}(s)=e^{-\Delta b_{p}}{ }^{T}(a s)$


证明 .

We shall apply this relation to the ease where $y$ is the standardized random variable for $r$,
$$
y=\frac{r-E(r)}{\sigma_{p}}=\frac{r-n E(x)}{\sqrt{n} \sigma_{n}} \quad a=\frac{1}{\sqrt{n} \sigma_{s}} \quad b=-\frac{\sqrt{n} E(x)}{\sigma_{z}}
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

6CCM341A COURSE NOTES :

and if $a$ and $b$ are integers with $b>a$, there follows
$\operatorname{Prob}(a \leq k \leq b)=\sum_{k_{0}=a}^{b}\left(\begin{array}{l}n \ k_{0}\end{array}\right) P v_{k}(1-P)^{a-k_{0}}$
Should this quantity be of interest, it would generally require a very unpleasant ealculation. So we might, for large $n$, turn to the eentral limit theorem, noting that
$$
k=x_{1}+x_{2}+\cdots+x_{n}
$$