伽罗瓦理论|MA40037 Galois Theory代写

0

To give a thorough treatment of the fundamental theory of Galois on solvability of polynomials and the subtle interplay between group theory and field theory that arises in this context.

这是一份Bath巴斯大学MA40037作业代写的成功案

伽罗瓦理论|MA40037 Galois Theory代写

Now $Q$ is a group of order $p^{n-1}$, so by the inductive hypothesis there is a sequence of subgroups $Q=Q_{0} \supset Q_{1} \supset \cdots \supset Q_{n-1}={1}$ with $Q_{i}$ a normal subgroup of $Q$ of index $p^{i}$ for each $i=1, \ldots, n-1$. Let $G_{i}=\pi^{-1}\left(Q_{i}\right)$ for $i=1, \ldots, n-1$ and $G_{n}={1}$. Then $G=G_{0} \supset G_{1} \supset \cdots \supset G_{n}={1}$ form a sequence as claimed. (Clearly $G_{i}$ has index $p^{i}$. Also, $G_{i}$ is a normal subgroup of $\mathrm{G}$ as if $g_{0} \in G_{i}$ and $g \in G$, then $g g_{0} g^{-1} \in G_{i}$ as $\pi\left(g g_{0} g^{-1}\right)=$ $\pi(g) \pi\left(g_{0}\right)(\pi(g))^{-1} \in Q_{i}$ as $Q_{i}$ is a normal subgroup of $\left.Q .\right)$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MA40037 COURSE NOTES :

By renumbering if necessary, we may assume the transposition is $\tau=$ (12).

Since $G$ acts transitively on ${1, \ldots, p}$, it has order divisible by $p$ and hence it has an element $\sigma_{0}$ of order $p$. Since $p$ is a prime, $\sigma_{0}$ is a p-cycle. Thus there is some power $\sigma=\sigma_{0}^{k}$ of $\sigma_{0}$ with $\sigma(1)=2$. By renumbering if necessary, we may then assume $\sigma=\left(\begin{array}{llll}1 & 2 & \cdots & p\end{array}\right)$. Now direct calculation shows that
$$
\sigma^{j} \tau \sigma^{-j}=(12 \cdots p)^{j}(12)(12 \cdots p)^{-j}=((j+1)(j+2))
$$
for $j=0, \ldots, p-2$. Direct calculation then shows that
$$
\begin{aligned}
(23)(12)(23) &=(13), \
(34)(13)(34) &=(14), \
\vdots & \
((p-1) p)(1(p-1))((p-1) p) &=(1 p)
\end{aligned}
$$




伽罗瓦理论|MATH10080 Galois Theory代写

0

这是一份ed.ac爱丁堡格大学MATH10080作业代写的成功案

伽罗瓦理论|MATH10080 Galois Theory代写

Let $\sigma \in G, \sigma \neq$ id. Then for some $\alpha \in \mathbf{E}, \sigma(\alpha) \neq \alpha$. Let $\mathbf{B}=\mathbf{F}(\alpha)$. Then $\sigma \notin U_{\mathrm{B}}$, as required.
(2) $G$ is totally disconnected: Let $\sigma, \tau \in G, \sigma \neq \tau$. Then $\tau \notin \sigma U_{\mathrm{B}}$ for some $U_{\mathbf{B}}$, and then $G=\sigma U_{\mathbf{B}} \cup\left(G-\sigma U_{\mathbf{B}}\right)$ is a union of two relatively open sets with $\sigma$ (resp. $\tau$ ) in the first (resp. second). ( $\sigma U_{\mathrm{B}}$ is open by definition and $G-\sigma U_{B}$ is open as in the proof of Lemma 5.4.12.) Thus $\sigma$ and $\tau$ are in different components of $G$, so the only components of $G$ are single points.
(3) $G$ is compact: This will require considerably more work.$$
\mathcal{G}=\prod_{\alpha \in \mathbf{E}} R_{\alpha}
$$


英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MATH10080 COURSE NOTES :

Since $N$ is the unique subgroup of order $p$ of $G$, it is certainly a normal subgroup of $G$. Let $\sigma \in G$ be arbitrary. Then $\sigma \nu \sigma^{-1}=v^{h}$ for some $h \neq 0$.
Let $\sigma\left(\left[\begin{array}{l}0 \ 1\end{array}\right]\right)=\left[\begin{array}{l}n \ 1\end{array}\right]$. Then, for any $i$,
$$
\left[\begin{array}{c}
n+i h \
1
\end{array}\right]=v^{i h}\left(\left[\begin{array}{l}
n \
1
\end{array}\right]\right)=\sigma v^{i} \sigma^{-1}\left(\left[\begin{array}{l}
n \
1
\end{array}\right]\right)=\sigma v^{i}\left(\left[\begin{array}{l}
0 \
1
\end{array}\right]\right)=\sigma\left(\left[\begin{array}{l}
i \
1
\end{array}\right]\right)
$$
so
$$
\sigma\left(\left[\begin{array}{l}
i \
1
\end{array}\right]\right)=\left[\begin{array}{ll}
h & n \
0 & 1
\end{array}\right]\left[\begin{array}{l}
i \
1
\end{array}\right]
$$



伽罗瓦理论|Galois Theory代写6CCM326A

0

这是一份kcl伦敦大学学院 6CCM326A作业代写的成功案

伽罗瓦理论|Galois Theory代写6CCM326A
问题 1.

$$
b^{\prime}=a^{\prime} \sum_{i=1}^{p-1} \zeta^{i}=((p-3) / 4) \sum_{i=1}^{p-1} \zeta^{i}=((p-3) / 4)(-1)=-(p-3) / 4
$$
and then
$$
b=(p-1) / 2+b^{\prime}=(p-1) / 2-(p-3) / 4=(p+1) / 4
$$

证明 .

Now
$$
\begin{aligned}
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right) &=X^{2}-\left(\alpha_{0}+\alpha_{1}\right) X+\alpha_{0} \alpha_{1} \
&=X^{2}+X+b,
\end{aligned}
$$
so
$$
\begin{array}{ll}
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)=X^{2}+X-(p-1) / 4 & \text { if } p \equiv 1(\bmod 4) \
\left(X-\alpha_{0}\right)\left(X-\alpha_{1}\right)=X^{2}+X+(p+1) / 4 & \text { if } p \equiv 3(\bmod 4)
\end{array}
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

6CCM326ACOURSE NOTES :

$$
\theta=\alpha_{1} Y_{1}+\cdots+\alpha_{n} Y_{n} \in \tilde{\mathbf{E}}
$$
and let
$$
F(Z)=\prod_{\tau^{\prime} \in S_{n}}\left(Z-\tau^{\prime}(\theta)\right) \in \tilde{\mathbf{E}}[Z]
$$
The polynomial $F(Z)$ is a symmetric function of its roots, so by Lemma its coefficients are functions of the elementary symmetric functions of its roots and hence of $Y_{1}, \ldots, Y_{n}$ and the coefficients of $f(X)$. Thus, $F(Z) \in$ $\tilde{\mathbf{F}}[Z]$. Now we may factor $F(Z)$ into a product of irreducibles in $\tilde{\mathbf{F}}[Z]$,
$$
F(Z)=F_{1}(Z) \cdots F_{t}(Z)
$$