计算物理学 Computational Physics PHYS96010

0

这是一份 Imperial帝国理工大学 PHYS96010作业代写的成功案例

计算物理学 Computational Physics PHYS96010
问题 1.

Assume now that we will employ two points to represent the function $f$ by way of a straight line between $x$ and $x+h$. illustrates this subdivision.
This means that we could represent the derivative with
$$
f_{2}^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h),
$$
where the suffix 2 refers to the fact that we are using two points to define the derivative and the dominating error goes like $O(h)$. This is the forward derivative formula. Alternatively, we could use the backward derivative formula
$$
f_{2}^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+O(h) .
$$

证明 .

If the second derivative is close to zero, this simple two point formula can be used to approximate the derivative. If we however have a function like $f(x)=a+b x^{2}$, we see that the approximated derivative becomes
$$
f_{2}^{\prime}(x)=2 b x+b h
$$
while the exact answer is $2 b x$. Unless $h$ is made very small, and $b$ is not too large, we could approach the exact answer by choosing smaller and smaller and values for $h$. However, in this case, the subtraction in the numerator, $f(x+h)-f(x)$ can give rise to roundoff errors.

A better approach in case of a quadratic expression for $f(x)$ is to use a 3 -step formula where we evaluate the derivative on both sides of a chosen point $x_{0}$ using the above forward and backward two-step formulae and taking the average afterward. We perform again a Taylor expansion but now around $x_{0} \pm h$, namely



英国论文代写Viking Essay为您提供作业代写代考服务

PHYS96010 COURSE NOTES :

To determine $f_{0}^{\prime}$, we require in the last equation that
$$
\begin{gathered}
a_{-h}+a_{0}+a_{h}=0, \
-a_{-h}+a_{h}=\frac{1}{h},
\end{gathered}
$$
and
$$
a_{-h}+a_{h}=0 .
$$
These equations have the solution
$$
a_{-h}=-a_{h}=-\frac{1}{2 h},
$$
and
$$
a_{0}=0
$$
yielding
$$
\frac{f_{h}-f_{-h}}{2 h}=f_{0}^{\prime}+\sum_{j=1}^{\infty} \frac{f_{0}^{(2 j+1)}}{(2 j+1) !} h^{2 j} .
$$
To determine $f_{0}^{\prime \prime}$, we require in the last equation that
$$
\begin{gathered}
a_{-h}+a_{0}+a_{h}=0, \
-a_{-h}+a_{h}=0,
\end{gathered}
$$








高级量子信息 Advanced Quantum Information PHYS97005

0

这是一份 Imperial帝国理工大学 PHYS97005作业代写的成功案例

高级量子信息 Advanced Quantum Information PHYS97005
问题 1.

expectation value
$$
\varrho(x):=\frac{1}{N}\left\langle\Psi\left|\sum_{i=1}^{N} \delta\left(x_{i}-x\right)\right| \Psi\right\rangle .
$$
Specializing to $\Psi=\Psi^{(0)}$ the density is just the sum of the one-body densities for everyone of the states in the product,
$$
\varrho^{(0)}(x)=\frac{1}{N} \sum_{i=1}^{N}\left|\psi_{i}(x)\right|^{2} .
$$

证明 .

Its integral over the whole three-dimensional space gives 1 ,
$$
\int \mathrm{d}^{3} x \rho(x)=1
$$
if all single-particle wave functions are normalized to unity.



英国论文代写Viking Essay为您提供作业代写代考服务

PHYS97005 COURSE NOTES :

In either case, with orthogonal or nonorthogonal $\psi_{1}$ and $\psi_{2}$, one verifies that $\int \mathrm{d}^{3} y \varrho(x, y)=\varrho(x)$. Second, if the orbital wave functions are not confined each to a finite domain, the presence of a second particle is felt under all circumstances. For example, assuming them to be plane waves,
$$
\left\langle x \mid \psi_{1}\right\rangle=c \mathrm{e}^{(\mathrm{i} / \hbar) p \cdot x}, \quad\left\langle y \mid \psi_{2}\right\rangle=c \mathrm{e}^{(\mathrm{i} / \hbar q) \cdot y} \text { with } c=(2 \pi \hbar)^{-3 / 2},
$$
the two-body correlation function (5.8) is found to be
$$
C(x, y)=-\frac{1}{2}{1+\cos ((q-p) \cdot(x-y))} .
$$








物理学家的数理方法 Mathematical Methods for Physicists PHYS97046

0

这是一份 Imperial帝国理工大学 PHYS97046作业代写的成功案例

物理学家的数理方法 Mathematical Methods for Physicists PHYS97046
问题 1.

using the product and chain rules of differentiation in conjunction. In particular, if $f(r)=r^{n-1}$,
$$
\nabla \cdot \mathbf{r} r^{n-1}=\nabla \cdot\left(\hat{\mathbf{r}} r^{n}\right)=3 r^{n-1}+(n-1) r^{n-1}=(n+2) r^{n-1}
$$
This divergence vanishes for $n=-2$, except at $r=0$ (where $\hat{\mathbf{r}} / r^{2}$ is singular). This is relevant for the Coulomb potential
$$
V(r)=A_{0}=-\frac{q}{4 \pi \epsilon_{0} r}
$$

证明 .

with the electric field
$$
\mathbf{E}=-\nabla V=\frac{q \hat{\mathbf{r}}}{4 \pi \epsilon_{0} r^{2}}
$$
we obtain the divergence $\nabla \cdot \mathbf{E}=0$ (except at $r=0$, where the derivatives are undefined).



英国论文代写Viking Essay为您提供作业代写代考服务

PHYS97046 COURSE NOTES :

Suppose we eliminate B . We may do this by taking the curl of both sides of and the time derivative of both sides. Since the space and time derivatives commute,
$$
\frac{\partial}{\partial t} \nabla \times \mathbf{B}=\nabla \times \frac{\partial \mathbf{B}}{\partial t}
$$
and we obtain
$$
\nabla \times(\nabla \times \mathbf{E})=-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$
Applicatio yields
$$
(\nabla \cdot \nabla) \mathbf{E}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}},
$$








高级经典物理学 Advanced Classical Physics PHYS96001

0

这是一份 Imperial帝国理工大学 PHYS96001作业代写的成功案例

高级经典物理学 Advanced Classical Physics PHYS96001
问题 1.

where $u=-i \theta, \lambda$ is the parameter in the bulk $S$ matrix while $\eta$ and $\vartheta$ are two real parameters that characterize the solution.

The spectrum of excited boundary states was determined. It can be parametrized by a sequence of integers $\left|n_{1}, n_{2}, \ldots, n_{k}\right\rangle$, whenever the
$$
\frac{\pi}{2} \geq v_{n_{1}}>w_{n_{2}}>\cdots \geq 0
$$

证明 .

condition holds, where
$$
v_{n}=\frac{\eta}{\lambda}-\frac{\pi(2 n+1)}{2 \lambda} \text { and } w_{k}=\pi-\frac{\eta}{\lambda}-\frac{\pi(2 k-1)}{2 \lambda} .
$$
The mass of such a state is
$$
m_{\left.\mid n_{1}, n_{2}, \ldots, n_{k}\right)}=M \sum_{i \text { odd }} \cos \left(v_{n_{i}}\right)+M \sum_{i \text { even }} \cos \left(w_{n_{l}}\right) .
$$



英国论文代写Viking Essay为您提供作业代写代考服务

PHYS96001 COURSE NOTES :

In the following, it will be more convenient to work with a modified Bloch function $\chi=\tilde{\chi} \exp \left[-i k x \sigma_{3}-i\left(2 k^{2}+\omega\right) t \sigma_{3}\right]$ which satisfies the equations
$$
\chi_{x}=U \chi-i k \chi \sigma_{3}, \quad \chi_{t}=V \chi-i\left(2 k^{2}+\omega\right) \chi \sigma_{3}
$$
and admits the asymptotic expansion started with the unit matrix, $\chi=I+$ $k^{-1} \chi^{(1)}+\mathcal{O}\left(k^{-2}\right)$, while the potential $Q$ is reconstructed via
$$
Q=-\left[\sigma_{3}, \chi^{(1)}\right]
$$
Suppose now that a solution of NLS homoclinic to the plane wave (2) can be obtained from Eq. (4) with the Bloch function $\chi$ being a result of dressing the Bloch function $\chi_{0}$ which satisfies Eq. (3) with $u=u_{0}$ :
$$
x=D \chi_{0}
$$
Here $D(k, x, t)$ is the dressing factor,
$$
D=I-\frac{k_{1}-\bar{k}{1}}{k-\bar{k}{1}} P, \quad D^{-1}=I+\frac{k_{1}-\bar{k}{1}}{k-k{1}} P,
$$








算法和高频交易 Algorithmic and High-Frequency Trading MATH97233

0

这是一份 Imperial帝国理工大学 MATH97233作业代写的成功案例

算法和高频交易 Algorithmic and High-Frequency Trading MATH97233
问题 1.


\begin{aligned}
&y_{t}=\alpha+\sum_{i=0}^{\infty} \beta_{i} x_{t-i}+\varepsilon_{t} \
&y_{t}=f\left(x_{t}, x_{t-1}, x_{t-2}, \cdots\right)
\end{aligned}

证明 .

showed that translates into the following linear econometric equation:
$$
y_{t}=\alpha+\sum_{i=1}^{p} \phi_{i} y_{t-i}-\sum_{j=1}^{q} \theta_{j} x_{i-j}+\sum_{i=1}^{m} \sum_{j=1}^{s} \beta_{i j} y_{t-i} x_{t-j}+\varepsilon_{t}
$$
where $p, q, m$, and $s$ are nonnegative integers.



英国论文代写Viking Essay为您提供作业代写代考服务

MATH97233 COURSE NOTES :

across-time averages of both sides of and utilizing the fact that $E[\varepsilon]=0$ by assumption:
$$
E[y]=f(x)+E[\varepsilon]=f(x)
$$
or, equivalently,
$$
f(x)=\frac{1}{T} \sum_{t=1}^{T} y_{t}
$$
where $T$ is the size of the sample.
To make sure that the estimation of $f(x)$ considers only the values around $x$ and not the values of the entire time series, the values of $y_{t}$ can be weighted by a weight function, $w_{t}(x)$. The weight function is determined by another function, known as a “kernel function, ” $K_{h}(x)$ :
$$
w_{t}(x)=\frac{K_{h}\left(x-x_{t}\right)}{\sum_{t=1}^{T} K_{h}\left(x-x_{t}\right)}
$$








量化金融选题 Selected Topics in Quantitative Finance MATH97234

0

这是一份 Imperial帝国理工大学 MATH97234作业代写的成功案例

量化金融选题 Selected Topics in Quantitative Finance MATH97234
问题 1.

$$
S_{j}=\sum_{i=1}^{p} a_{j i} Z_{i}+\sigma_{j} \epsilon_{j}, \quad j=1, \ldots n .
$$
Here $a_{j i}$ describes the exposure of obligor $j$ to factor $i$, i.e. the so-called factor loading, and $\sigma_{j}$ is the volatility of the idiosyncratic risk contribution. In such a framework one can easily interfere default correlation from the correlation of the underlying drivers $S_{j}$. To do so, we define default indicators
$$
Y_{j}=1\left(S_{j} \leq D_{j}\right)
$$
where $D_{j}$ is the cut-off point for default of obligor $j$. The individual default probabilities are
$$
\pi_{j}=\mathrm{P}\left(Y_{j}=1\right)=\mathrm{P}\left(S_{j} \leq D_{j}\right),
$$

证明 .

and the joint default probability is
$$
\pi_{i j}=\mathrm{P}\left(Y_{i}=1, Y_{j}=1\right)=\mathrm{P}\left(S_{i} \leq D_{i}, S_{j} \leq D_{j}\right) .
$$
If we denote by $\rho_{i j}=\operatorname{Corr}\left(S_{i}, S_{j}\right)$ the correlation of the underlying latent variables and by $\rho_{i j}^{D}=\operatorname{Corr}\left(Y_{i}, Y_{j}\right)$ the default correlation of obligors $i$ and $j$, then we obtain for the default correlation the simple formula
$$
\rho_{i j}^{D}=\frac{\pi_{i j}-\pi_{i} \pi_{j}}{\sqrt{\pi_{i} \pi_{j}\left(1-\pi_{i}\right)\left(1-\pi_{j}\right)}} .
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH97234 COURSE NOTES :

The SPD is then the second derivative of the call option function with respect to the strike price:
$$
f^{*}(\cdot)=e^{r \tau} \frac{\partial^{2} C}{\partial K^{2}}=e^{r \tau} \tilde{S} \frac{\partial^{2} c}{\partial K^{2}} .
$$
The conversion is needed because $c(\cdot)$ is being estimated not $C(\cdot)$. The analytical expression of (8.13) depends on:
$$
\frac{\partial^{2} c}{\partial K^{2}}=\frac{\mathrm{d}^{2} c}{\mathrm{~d} M^{2}}\left(\frac{M}{K}\right)^{2}+2 \frac{\mathrm{d} c}{\mathrm{~d} M} \frac{M}{K^{2}}
$$
The functional form of $\frac{\mathrm{d} c}{\mathrm{~d} M}$ is:
$$
\frac{\mathrm{d} c}{\mathrm{~d} M}=\Phi^{\prime}\left(d_{1}\right) \frac{\mathrm{d} d_{1}}{\mathrm{~d} M}-e^{-r \tau} \frac{\Phi^{\prime}\left(d_{2}\right)}{M} \frac{\mathrm{d} d_{2}}{\mathrm{~d} M}+e^{-r \tau} \frac{\Phi\left(d_{2}\right)}{M^{2}}
$$








金融中的随机控制 Stochastic Control in Finance MATH97232

0

这是一份 Imperial帝国理工大学 MATH97232作业代写的成功案例

市场微观结构 Market Microstructure MATH97230
问题 1.


This is the case since when we are in state $i$, it is possible that a state $j$ will never be reached. This case corresponds to $i$ and j not communicating. Inversely, when $i$ and $j$ communicate (i.e. it is possible to switch from $i$ to $j$ in a finite number of transitions), we can then calculate the expectation of the passage time from $i$ to $j$. To do so, define explicitly $f_{i j}(n)=P_{i}\left(T_{j}=n\right)$ where $T_{j}$ is the first time the state $j$ is reached, or, $\left(x_{k}=j\right)$ written by :
$$
T_{j}=\operatorname{Inf}\left(k \geq 0, x_{k}=j\right)
$$
Let this expectation be given by :
$$
\mu_{i j}=\sum_{n=0}^{\infty} n f_{i j}(n)=E\left(T_{j} / x_{0}=i\right)
$$

证明 .

$$
\mu_{i j}=1+\sum_{k \neq j} P_{i k} \mu_{k j}
$$
Note that if $k=j, \mu_{k j}=\mu_{k k}=E\left(T_{k} / k=k\right)=0$. In our case, we have :
$$
\begin{aligned}
&\mu_{21}=1+\mu_{21}(0.5)+\mu_{31}(0.4) \
&\mu_{31}=1+\mu_{21}(0.3)+\mu_{31}(0.6)
\end{aligned}
$$
which leads to
$$
\mu_{21}=\mu_{31}=10 \text { months }
$$



英国论文代写Viking Essay为您提供作业代写代考服务

MATH97232 COURSE NOTES :

$$
E(x)=\int_{\Gamma} x(\alpha) d P(\alpha)=\int_{-\infty}^{+\infty} x d F(x)
$$
These integrals are called Stieljes integrals (when they exist). The variance is defined, however, by:
$$
\sigma_{x}^{2}=\int_{\Gamma}(x(\alpha)-E(x))^{2} d P(\alpha)=\int_{-\infty}^{+\infty}(x-E(x))^{2} d F(x)
$$
Finally, partial moments are defined by :
$$
E_{a}^{b}(X)=\int_{a}^{b} x d F(x)
$$








金融的随机微积分 Stochastic Calculus for Finance MATH97228

0

这是一份 Imperial帝国理工大学 MATH97228作业代写的成功案例

金融的随机微积分 Stochastic Calculus for Finance MATH97228
问题 1.

one can show that
$$
\mu_{X}[a, b]=b-a, \quad 0 \leq a \leq b \leq 1
$$
in other words, the distribution measure of $X$ is uniform on $[0,1]$.
(Standand normal random variable). Let
$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

证明 .

be the standard normal density, and define the cumulative normal distribution function
$$
N(x)=\int_{-\infty}^{x} \varphi(\xi) d \xi
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH97228 COURSE NOTES :

Let $X$ be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We would like to compute an “average value” of $X$, where we take the probabilities into account when doing the averaging. If $\Omega$ is finite, we simply define this average value by
$$
\mathbb{E} X=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)
$$
If $\Omega$ is countably infinite, its elements can be listed in a sequence $\omega_{1}, \omega_{2}, \omega_{3}, \ldots$, and we can define $\mathbb{E X}$ as an infinite sum:
$$
\mathbb{E} X=\sum^{\infty} X\left(\omega_{k}\right) \mathbb{P}\left(\omega_{k}\right)
$$








凸面优化 Convex Optimisation MATH97117

0

这是一份 Imperial帝国理工大学 MATH97117作业代写的成功案例

凸面优化 Convex Optimisation MATH97117
问题 1.

Consider a compact $\Omega$ with the origin $x=0$ belonging to it; since $f$ is $\mathscr{C}^{2}$, each $z_{j}$ can be bounded in $\Omega$ by two affine functions:
$$
z_{j}^{0}(x) \leq z_{j}(x) \leq z_{j}^{1}(x)
$$
where
$$
z_{j}^{1}(x)=a_{1}^{j} v_{j}^{T} x+b_{1}^{j}, \quad z_{j}^{0}(x)=a_{0}^{j} v_{j}^{T} x+b_{0}^{j},
$$

证明 .

being $a_{i}^{j}, b_{i}^{j}$ scalars, and $v_{j}^{T}$ row vectors which constitute arbitrarily tight linear bounds on $z_{j}(\boldsymbol{x})$. With available, we have
$$
z_{j}(x)=\sum_{i=0}^{1} w_{i}^{j}(x)\left(a_{i}^{j} v_{j}^{T} x+b_{i}^{j}\right),
$$
with weights given by the well-known interpolation expression:
$$
w_{0}^{j}\left(z_{j}\right):=\frac{z_{j}^{1}(\boldsymbol{x})-z_{j}(\boldsymbol{x})}{z_{j}^{1}(\boldsymbol{x})-z_{j}^{0}(\boldsymbol{x})}, \quad w_{1}^{j}\left(z_{j}\right):=1-w_{0}^{j}\left(z_{j}\right) .
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH97117 COURSE NOTES :

$$
\sin x_{3}=x_{3}-\frac{x_{3}^{3}}{3 !}+\frac{x_{3}^{5}}{5 !}-\frac{x_{3}^{7}}{7 !}+\cdots
$$
If only the first-degree term is used to rewrite $\sin x_{3}$ as a convex expression, it yields the same outcome as if sector nonlinearity was used, i.e. the terms
$$
\xi_{1}^{1}\left(z_{1}\right)=0, \quad T_{1}^{1}\left(z_{1}\right)=\frac{\sin z_{1}-0}{z_{1}},
$$
where $N=1, z_{1}=x_{3}$, allow bounding $T_{1}^{1}\left(z_{1}\right)$ by $\psi_{1}^{1}=1$ and $\psi_{1}^{2}=0.8415$ in $\left|x_{3}\right| \leq$ 1. Thus, the corresponding weights are defined as follows:
$$
w_{0}^{1}\left(z_{1}\right)=\frac{T_{1}^{1}\left(z_{1}\right)-0.8415}{1-0.8415}, \quad w_{1}^{1}\left(z_{1}\right)=1-w_{0}^{1}\left(z_{1}\right) .
$$








机器学习的研究进展 Advances in Machine LearningMATH97119

0

这是一份 Imperial帝国理工大学 MATH97119作业代写的成功案例

机器学习的研究进展 Advances in Machine LearningMATH97119
问题 1.

where $P_{Q}$ denotes the probability that all $m$ servers are busy and $p(0)$ denotes the probability that the queue length is 0 . We have
$$
P_{Q}=\left(m \cdot \rho^{\prime}\right)^{m} \frac{p(0)}{m !} \cdot \frac{1}{1-\rho^{\prime}}
$$

证明 .

$$
p(0)=\left[\frac{\left(m \cdot \rho^{\prime}\right)^{m}}{m !\left(1-\rho^{\prime}\right)}+\left(\sum_{i=0}^{m-1} \frac{\left(m \cdot \rho^{\prime}\right)^{\prime}}{i !}\right)\right]^{-1}
$$
Average population: $n^{\prime}=P_{Q} \cdot \frac{\rho^{\prime}}{\left(1-\rho^{\prime}\right)}$


英国论文代写Viking Essay为您提供作业代写代考服务

MATH97119 COURSE NOTES :

$$
V_{i, j}{ }^{m}\left(t, X_{i, j}{ }^{w}\right)=1-\frac{1}{\mu_{i, j}\left(X_{i, j}{ }^{w x}\right)} \times e^{\frac{1}{\mu_{v}\left(X_{i, j}{ }^{n \prime}\right)}} .
$$
Note that $\mu_{i j}\left(X_{i, j}{ }^{w s}\right.$ denotes the service rate of $w s_{i, f}$
$$
\mu_{i, j}\left(X_{i, j}{ }^{k x}\right)=\frac{1}{t_{i, j}\left(\mu_{i, j}\left(X_{i, j}{ }^{* x}\right)\right)}
$$