微分几何学|MATH4068 Differential Geometry代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4068的成功案例

微分几何学|MATH4068 Differential Geometry代写 Sydney代写


问题 1.

$$
\operatorname{det} \Pi\left(t, t_{0}\right)=1
$$
and hence the characteristic equation for the monodromy matrix
$$
M\left(t_{0}\right)=\left(\begin{array}{cc}
c\left(t_{0}+T, t_{0}\right) & s\left(t_{0}+T, t_{0}\right) \
\dot{c}\left(t_{0}+T, t_{0}\right) & \dot{s}\left(t_{0}+T, t_{0}\right)
\end{array}\right),
$$
is given by
$$
\rho^{2}-2 \Delta \rho+1=0
$$
where
$$
\Delta=\frac{\operatorname{tr}\left(M\left(t_{0}\right)\right)}{2}=\frac{c\left(t_{0}+T, t_{0}\right)+\dot{s}\left(t_{0}+T, t_{0}\right)}{2} .
$$

证明 .

If $\Delta^{2}>1$ we have two different real eigenvalues
$$
\rho_{\pm}=\Delta \pm \sqrt{\Delta^{2}-1}=\sigma \mathrm{e}^{\pm T \gamma}
$$
with corresponding eigenvectors
$$
u_{\pm}\left(t_{0}\right)=\left(\begin{array}{c}
1 \
m_{\pm}\left(t_{0}\right)
\end{array}\right)
$$
where
$$
m_{\pm}\left(t_{0}\right)=\frac{\rho_{\pm}-c\left(t_{0}+T, t_{0}\right)}{s\left(t_{0}+T, t_{0}\right)}=\frac{\dot{s}\left(t_{0}+T, t_{0}\right)}{\rho_{\pm}-\dot{c}\left(t_{0}+T, t_{0}\right)}
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4068 COURSE NOTES :

$u_{1}, \ldots, u_{m}$ is a basis for $V_{1}$ and $u_{m+1}, \ldots, u_{n}$ is a basis for $V_{2}$, implies that $A$ is transformed to the block form
$$
U^{-1} A U=\left(\begin{array}{cc}
A_{1} & 0 \
0 & A_{2}
\end{array}\right)
$$
in these new coordinates. Moreover, we even have
$$
U^{-1} \exp (A) U=\exp \left(U^{-1} A U\right)=\left(\begin{array}{cc}
\exp \left(A_{1}\right) & 0 \
0 & \exp \left(A_{2}\right)
\end{array}\right)
$$
Hence we need to find some invariant subspaces which reduce $A$. If we look at one-dimensional subspaces we must have
$$
A x=\alpha x, \quad x \neq 0
$$



















应用多元统计学 Appld Multivariate Statistics MATH4068

0

这是一份nottingham诺丁汉大学MATH4068作业代写的成功案例

应用多元统计学 Appld Multivariate Statistics MATH4068

$$
\begin{aligned}
\Lambda &=\frac{\left|\mathbf{A E A}^{\prime}\right|}{\left|\mathbf{A}(\mathbf{E}+\mathbf{H}) \mathbf{A}^{\prime}\right|}=\frac{3.058 \times 10^{8}}{3.092 \times 10^{8}} \
&=.9889>\Lambda_{.05,2,1,18}=.703 .
\end{aligned}
$$
For the $B C$ interaction, we have
$$
\begin{aligned}
\Lambda &=\frac{\left|\mathbf{B E B}^{\prime}\right|}{\left|\mathbf{B}(\mathbf{E}+\mathbf{H}) \mathbf{B}^{\prime}\right|}=\frac{4.053 \times 10^{6}}{4.170 \times 10^{6}} \
&=.9718>\Lambda_{.05,2,1,18}=.703 .
\end{aligned}
$$
For $A B C$, we obtain
$$
\begin{aligned}
\Lambda &=\frac{\mid \text { GEG }^{\prime} \mid}{\left|\mathbf{G}(\mathbf{E}+\mathbf{H}) \mathbf{G}^{\prime}\right|}=\frac{2.643 \times 10^{12}}{2.927 \times 10^{12}} \
&=.9029>\Lambda_{.05,4,1,18}=.551 .
\end{aligned}
$$
In summary, factors $A, B$, and $C$ and the $A B$ interaction are significant.

英国论文代写Viking Essay为您提供作业代写代考服务

MATH4068 COURSE NOTES :

Factor A
$$
T^{2}=N\left(\mathbf{A} \overline{\mathbf{y}}{\ldots}\right)^{\prime}\left(\mathbf{A}{\mathrm{pl}^{\mathrm{A}}} \mathbf{A}^{\prime}\right)^{-1}\left(\mathbf{A} \mathbf{y}{\ldots}\right) $$ is distributed as $T{a-1, v_{E}}^{2}$.
Factor B
$$
T^{2}=N\left(\mathbf{B}{\ldots}\right)^{\prime}\left(\mathbf{B S}{\mathrm{pl}} \mathbf{B}^{\prime}\right)^{-1}\left(\mathbf{B}{\mathbf{y}}^{\ldots}\right) $$ is distributed as $T{b-1, v_{E}}^{2}$.
AB Interaction
$$
T^{2}=N\left(\mathbf{G}{\ldots}\right)^{\prime}\left(\mathbf{G S}{\rho l} \mathbf{G}^{\prime}\right)^{-1}\left(\mathbf{G}{\ldots}\right) $$ is distributed as $T{(a-1)(b-1), v E^{*}}^{2}$.