微分几何学|MATH4068 Differential Geometry代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4068的成功案例

微分几何学|MATH4068 Differential Geometry代写 Sydney代写


问题 1.

$$
\operatorname{det} \Pi\left(t, t_{0}\right)=1
$$
and hence the characteristic equation for the monodromy matrix
$$
M\left(t_{0}\right)=\left(\begin{array}{cc}
c\left(t_{0}+T, t_{0}\right) & s\left(t_{0}+T, t_{0}\right) \
\dot{c}\left(t_{0}+T, t_{0}\right) & \dot{s}\left(t_{0}+T, t_{0}\right)
\end{array}\right),
$$
is given by
$$
\rho^{2}-2 \Delta \rho+1=0
$$
where
$$
\Delta=\frac{\operatorname{tr}\left(M\left(t_{0}\right)\right)}{2}=\frac{c\left(t_{0}+T, t_{0}\right)+\dot{s}\left(t_{0}+T, t_{0}\right)}{2} .
$$

证明 .

If $\Delta^{2}>1$ we have two different real eigenvalues
$$
\rho_{\pm}=\Delta \pm \sqrt{\Delta^{2}-1}=\sigma \mathrm{e}^{\pm T \gamma}
$$
with corresponding eigenvectors
$$
u_{\pm}\left(t_{0}\right)=\left(\begin{array}{c}
1 \
m_{\pm}\left(t_{0}\right)
\end{array}\right)
$$
where
$$
m_{\pm}\left(t_{0}\right)=\frac{\rho_{\pm}-c\left(t_{0}+T, t_{0}\right)}{s\left(t_{0}+T, t_{0}\right)}=\frac{\dot{s}\left(t_{0}+T, t_{0}\right)}{\rho_{\pm}-\dot{c}\left(t_{0}+T, t_{0}\right)}
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4068 COURSE NOTES :

$u_{1}, \ldots, u_{m}$ is a basis for $V_{1}$ and $u_{m+1}, \ldots, u_{n}$ is a basis for $V_{2}$, implies that $A$ is transformed to the block form
$$
U^{-1} A U=\left(\begin{array}{cc}
A_{1} & 0 \
0 & A_{2}
\end{array}\right)
$$
in these new coordinates. Moreover, we even have
$$
U^{-1} \exp (A) U=\exp \left(U^{-1} A U\right)=\left(\begin{array}{cc}
\exp \left(A_{1}\right) & 0 \
0 & \exp \left(A_{2}\right)
\end{array}\right)
$$
Hence we need to find some invariant subspaces which reduce $A$. If we look at one-dimensional subspaces we must have
$$
A x=\alpha x, \quad x \neq 0
$$



















微分几何学|MATH3968 Differential Geometry代写 Sydney代写

0

这是一份Sydney悉尼大学MATH3968的成功案例

微分几何学|MATH3968 Differential Geometry代写 Sydney代写


when expressed in the language of the symplectic form $\omega$, the Jacobi identity turns out to be equivalent to its closedness
$$
{f,{g, h}}+{h,{f, g}}+{g,{h, f}}=0 \quad \Leftrightarrow \quad d \omega=0
$$
when expressed in the language of the Poisson tensor $\mathcal{P}$, the Jacobi identity turns out to be equivalent to its invariance with respect to an arbitrary Hamiltonian field ${ }^{250}$
$$
{f,{g, h}}+{h,{f, g}}+{g,{h, f}}=0 \quad \Leftrightarrow \quad \mathcal{L}{\zeta \uparrow} \mathcal{P}=0, \psi \in \mathcal{F}(M) $$ and in components this gives the differential identity $$ \mathcal{L}{\zeta_{f}} \mathcal{P}=0 \text { for all } f \in \mathcal{F}(M) \quad \Leftrightarrow \quad \mathcal{P}^{r[i} \mathcal{P}_{, \gamma}^{j k]}=0
$$
So this is the identity (mentioned above) which each Poisson tensor is to satisfy.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH3968 COURSE NOTES :

The coordinates $\left(q^{a}, p_{a}\right)$, in which the symplectic form $\omega$ looks like this and whose existence is guaranteed by the Darboux theorem, are called the canonical coordinates in canonical coordinates the corresponding Poisson tensor is
$$
\mathcal{P} \equiv-\omega^{-1}=\frac{\partial}{\partial p_{a}} \wedge \frac{\partial}{\partial q^{a}}:=\frac{\partial}{\partial p_{a}} \otimes \frac{\partial}{\partial q^{a}}-\frac{\partial}{\partial q^{a}} \otimes \frac{\partial}{\partial p_{a}}
$$
in canonical coordinates the Hamiltonian field is
$$
\zeta_{f}=\left(\partial_{j} f\right) \mathcal{P}^{j /} \partial_{i} \equiv \frac{\partial f}{\partial p_{a}} \frac{\partial}{\partial q^{a}}-\frac{\partial f}{\partial q^{a}} \frac{\partial}{\partial p_{a}}
$$

















微分几何学 Differential Geometry MATH349

0

这是一份liverpool利物浦大学MATH349的成功案例

微分几何学 Differential Geometry MATH349

$$
\bar{x}^{1}=\frac{x^{1}-\beta c x^{4}}{\sqrt{1-\beta^{2}}} ; \quad \bar{x}^{2}=x^{2} ; \quad \bar{x}^{3}=x^{3} ; \quad \bar{x}^{4}=\frac{x^{4}-\beta x^{1} / c}{\sqrt{1-\beta^{2}}}
$$
Notice that solving the first equation for $x^{1}$ gives
$$
x^{1}=\bar{x}^{1} \sqrt{1-\beta^{2}}+\beta c x^{4} .
$$
Since $x^{4}$ is just time $t$ here, it means that the origin of the $\bar{x}$-system has coordinates $(\beta c t, 0$, 0 ) in terms of the original coordinates. In other words, it is moving in the $x$-direction with a velocity of
$$
v=\beta c
$$
so we must interpret $\beta$ as the speed in “warp;”
$$
\beta=\frac{v}{c} .
$$

英国论文代写Viking Essay为您提供作业代写代考服务

MATH349 COURSE NOTES :

$$
\frac{D X}{d t}=\pi \frac{d X}{d t}
$$
which, by the lemma, has local coordinates given by
$$
\frac{D X^{i}}{d t}=g^{i r}\left(\frac{d X}{d t} \cdot \frac{\partial}{\partial x^{r}}\right) .
$$
To evaluate the term in parentheses, we use ambeint coordinates. $d X / d t$ has ambient coordinates
$$
\frac{d}{d t}\left(X^{p} \frac{\partial y_{s}}{\partial x^{p}}\right)=\frac{d X^{p}}{d t} \frac{\partial y_{s}}{\partial x^{p}}+X^{p} \frac{\partial^{2} y_{s}}{\partial x^{p} \partial x^{q}} \frac{d x^{q}}{d t}
$$
Thus, dotting with $\partial / \partial x^{k}=\partial y_{s} / \partial x^{r}$ gives
$$
\frac{d X^{p}}{d t} \frac{\partial y_{s}}{\partial x^{p}} \frac{\partial y_{s}}{\partial x^{r}}+X^{p} \frac{\partial^{2} y_{s}}{\partial x^{p} \partial x^{q}} \frac{\partial y_{s}}{\partial x^{r}} \frac{d x^{q}}{d t}
$$