热力学代写 Thermodynamics代考2023

0

如果你也在 怎样代写热力Thermodynamics学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

热力学代写Thermodynamics

热力学是物理学的一个分支,涉及热、功和温度,以及它们与能量、熵以及物质和辐射的物理特性的关系。这些数量的行为受热力学四大定律的制约,这些定律使用可测量的宏观物理量来传达定量描述,但可以用统计力学的微观成分来解释。热力学适用于科学和工程的各种主题,特别是物理化学、生物化学、化学工程和机械工程,但也适用于其他复杂的领域,如气象学。

热力学包含几个不同的主题,列举如下:

经典热力学Classical thermodynamics代写

经典热力学是对处于近平衡状态的热力学系统状态的描述,它使用宏观的、可测量的属性。它被用来模拟基于热力学定律的能量、功和热的交换。修饰语 “经典 “反映了这样一个事实,即它代表了对这一主题在19世纪发展的第一层理解,并以宏观经验(大尺度和可测量的)参数来描述一个系统的变化。这些概念的微观解释后来由统计力学的发展提供。

统计力学Statistical mechanics代写

统计力学,又称统计热力学,是随着19世纪末20世纪初原子和分子理论的发展而出现的,并以对单个粒子或量子力学状态之间的微观相互作用的解释补充了经典热力学。这一领域将单个原子和分子的微观属性与人类尺度上可以观察到的材料的宏观、批量属性联系起来,从而将经典热力学解释为统计学、经典力学和量子理论在微观层面的自然结果。

其他相关科目课程代写:

  • Chemical thermodynamics化学热力学
  • Equilibrium thermodynamics平衡热力学

热力学的历史

热力学是经典物理学和化学的一个分支,它研究和描述在一个热力学系统中,在涉及状态变量温度和能量变化的过程中,从热到功所引起的热力学转化。

经典热力学是基于宏观系统的概念,即在物理上或概念上与外部环境分离的一部分质量,为方便起见,通常假设它不会受到与系统的能量交换的干扰(孤立系统):处于平衡状态的宏观系统的状态是由被称为热力学变量或状态函数的量来规定的,如温度、压力、体积和化学成分。化学热力学的主要符号已经由IUPAC建立。

热力学代写 Thermodynamics代考2023

 

Thermodynamics is a branch of classical physics and chemistry that studies and describes the thermodynamic transformations induced from heat to work in a thermodynamic system in processes involving changes in the state variables temperature and energy.

Classical thermodynamics is based on the concept of a macroscopic system, i.e. a part of the mass physically or conceptually separated from the external environment, which for convenience is usually assumed not to be disturbed by the exchange of energy with the system (isolated system): the state of a macroscopic system in equilibrium is specified by quantities called thermodynamic variables or state functions, such as temperature, pressure, volume and chemical composition. The main notations of chemical thermodynamics have been established by IUPAC.

热力学相关课后作业代写

问题 1.

A state function for a Van der Waals gas is given by an equation between thermodynamic variables that depend on model parameters $A, B$, and a physical constant $R$ :
$$
\left(P+\frac{A N^2}{V^2}\right)(V-N B)=N R T
$$
where $A N^2 / V^2$ is referred to as the internal pressure due to the attraction between molecules and $N B$ is an extra volume, sometimes associated with the the volume per molecule.

Write out a differential expression for $d N$ in terms of differentials of the thermodynamic variables.

证明 .

A state function for a Van der Waals gas is given by an equation between thermodynamic variables that depend on model parameters $A, B$, and a physical constant $R$ :
$$
\left(P+\frac{A N^2}{V^2}\right)(V-N B)=N R T
$$
where $A N^2 / V^2$ is referred to as the internal pressure due to the attraction between molecules and $N B$ is an extra volume, sometimes associated with the volume per molecule.

Write out a differential expression for $d N$ in terms of differentials of the thermodynamic variables.

The solution is pretty straightforward. One way is to differentiate the entire expression and group the terms corresponding to $d N, d P, d T$, and $d V$. Another way to do is by implicit differentiation. The real gas equation can be rewritten such that,
$$
\begin{aligned}
N & =N(T, V, P) \
d N & =\left(\frac{\partial N}{\partial P}\right){T, V} d P+\left(\frac{\partial N}{\partial V}\right){T, P} d V+\left(\frac{\partial N}{\partial T}\right){P, V} d T \end{aligned} $$ In an equivalent way, you could have written the function $P=P(V, T, N)$ and extract $d N$ from the following. $$ d P=\left(\frac{\partial P}{\partial N}\right){T, V} d N+\left(\frac{\partial P}{\partial V}\right){T, N} d V+\left(\frac{\partial P}{\partial T}\right){N, V} d T
$$
For instance, the first term $\left(\frac{\partial P}{\partial N}\right){T, V}$ can be evaluated as $$ \left(\frac{\partial P}{\partial T}\right){P, V}=\frac{N R}{V-N B}
$$
Using any one of the methods you would get
$$
d N=\frac{(V-B N) d P+\left(P-\left(A N^2 / V^2\right)+\left(2 A B N^3 / V^3\right)\right) d V-R N d T}{B P+R T+\left(3 A B N^2 / V^2\right)-(2 A N / V)}
$$


热力学课后作业代写的应用代写

一个 “热力学系统 “是宇宙的任何部分,人们对其作为调查对象感兴趣(宇宙的其余部分被称为环境)。这部分空间与宇宙的其余部分,即外部环境,被一个控制面(真实的或想象的表面,刚性的或可变形的)分开,是内部转变和与外部环境的物质或能量交换的场所。因此,这些交换本身导致了系统的转变,因为它从一个起始条件到一个不同的条件。在实践中,当一个系统从最初的平衡状态到最终的平衡状态时,它就被转化了。另一方面,环境保持近似 “不变”,因为系统相对于它是如此之小,以至于能量或物质的交换对于环境中相同的整体来说是不相关的,否则我们就不是在谈论环境,而是在谈论另一个系统(根据定义,环境并不对应于它)。

英国论文代写Viking Essay为您提供热力学作业代写Thermodynamics代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

光学代写 optics代考2023

0

如果你也在 怎样代写热力Thermodynamics学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

光学代写optics

光学是研究光的行为和属性的物理学分支,包括它与物质的相互作用以及使用或探测它的仪器的构造。光学通常描述可见光、紫外光和红外光的行为。因为光是一种电磁波,其他形式的电磁辐射,如X射线、微波和无线电波也表现出类似的特性。

光学包含几个不同的主题,列举如下:

几何光学Geometrical optics代写

几何光学,或称射线光学,是一种用射线来描述光的传播的光学模型。几何光学中的光线是一个抽象的概念,有助于近似地描述光线在某些情况下的传播路径。

量子光学Quantum optics代写

量子光学是原子、分子和光学物理学的一个分支,处理单个光量子(称为光子)如何与原子和分子互动的问题。它包括研究光子的类似粒子的特性。光子已被用来测试量子力学的许多反直觉预测,如纠缠和远程传输,并且是量子信息处理的有用资源。

其他相关科目课程代写:

  • 反射(物理学)Reflection (physics)
  • 折射Refraction

光学的历史

光学的历史是科学史的一部分。光学一词来自古希腊语的τα ὀπτικά。它最初是指与眼睛有关的一切科学。希腊人将光学从dioptrics和catoptrics中区分出来。我们可能会把第一种科学称为视觉,第二种科学称为镜片,第三种科学称为镜子。希腊光学的伟大名字是欧几里德、亚历山大的赫伦和托勒密。

自古代以来,光学经历了许多发展。这个词的含义已经发生了变化,从对视觉的研究到对光的研究,经历了几个阶段,最近才被纳入到更广泛的物理学体系中。

光学代写 optics代考2023

 

The history of optics is a part of the history of science. The term optics comes from the ancient Greek τα ὀπτικά. It is originally the science of everything related to the eye. The Greeks distinguish optics from dioptrics and catoptrics. We would probably call the first science of vision, the second science of lenses and the third science of mirrors. The great names of Greek optics are Euclid, Heron of Alexandria and Ptolemy.

Since antiquity, optics has undergone many developments. The very meaning of the word has varied and from the study of vision, it has passed in several stages to the study of light, before being incorporated recently into a broader body of physics.

学相关课后作业代写

问题 1.

A glass plate is sprayed with uniform opaque particles. When a distant point source of light is observed looking through the plate, a diffuse halo is seen whose angular width is about $2^{\circ}$. Estimate the size of the particles. (Hint: consider Fraunhoffer diffraction through random gratings, and use Babinet’s principle)

证明 .

The diffraction pattern of an opaque circular particle is complementary to that due to circular apertures of the same size in an otherwise opaque screen.
Under the Fraunhofer condition $\left(\frac{k\left(x^{\prime 2}+y^{\prime 2}\right)}{2 z} \ll 1, \frac{k\left(x^2+y^2\right)}{2 z} \ll 1\right)$
$$
\begin{aligned}
& E\left(x^{\prime}, y^{\prime}\right) \approx \frac{1}{z} \iint \exp \left(-i k\left(\theta_{x^{\prime}} x+\theta_{y^{\prime}} y\right)\right) t(x, y) E(x, y) d x d y \
& \text { Where } \theta_{x^{\prime}} \approx \frac{x \prime}{z}, \theta_{y^{\prime}} \approx \frac{y \prime}{z} \
&
\end{aligned}
$$
For the given problem, we may further assume $\mathrm{E}(\mathrm{x}, \mathrm{y})$ is a plane wave at normal incidence, and the transmission function $t(x, y)$ for a single can be expressed as:
$$
t(x, y)=1-\operatorname{circ}\left(\frac{\sqrt{x^2+y^2}}{R}\right)
$$
Where $R$ is the radius of the opaque particles.
$$
\begin{gathered}
E\left(x^{\prime}, y^{\prime}\right) \approx \frac{1}{z} \iint \exp \left(-i k\left(\theta_{x^{\prime}} x+\theta_{y^{\prime}} y\right)\right)\left[1-\operatorname{circ}\left(\frac{\sqrt{x^2+y^2}}{R}\right)\right] d x d y \
E\left(x^{\prime}, y^{\prime}\right) \approx \frac{1}{z} \mathcal{F}\left[1-\operatorname{circ}\left(\frac{\sqrt{x^2+y^2}}{R}\right)\right] \
\text { With } x^{\prime}=\frac{z}{k} k_x, y^{\prime}=\frac{z}{k} k_y \
E\left(k_x, k_y\right) \approx \frac{1}{z}\left[\delta\left(\sqrt{k_x{ }^2+k_y{ }^2}\right)-|R|^2 \frac{2 \pi J_1\left(R \sqrt{k_x^2+k_y{ }^2}\right)}{R \sqrt{k_x{ }^2+k_y{ }^2}}\right]
\end{gathered}
$$

Where $\gamma=R \sqrt{k_x^2+k_y^2}=\frac{2 \pi}{\lambda} R \theta$
From the above table,
$$
\frac{2 \pi}{\lambda} R \Delta \theta=7.106-3.832=3.274
$$
Taking central wavelength at visible frequency, $\lambda=500 \mathrm{~nm}$ and given $\Delta \theta=2^{\circ}$, we find the radius of the particle:
$$
R=\lambda \frac{3.274}{(2 \pi)^2\left(\frac{\Delta \theta}{360}\right)}=500 \mathrm{~nm} \times\left(\frac{3.274}{(2 \pi)^2 \frac{2}{360}}\right)=7463 \mathrm{~nm}=7.4 \mu \mathrm{m}
$$


光学课后作业代写的应用代写

大多数的光学现象都可以用经典的光的电磁描述来解释,然而完整的光的电磁描述往往很难在实践中应用。实用光学通常使用简化模型。其中最常见的是几何光学,它将光视为直线传播的光线的集合,当它们通过或从表面反射时,会发生弯曲。物理光学是一个更全面的光的模型,它包括波的效应,如衍射和干涉,这些效应在几何光学中是无法解释的。从历史上看,基于射线的光的模型首先被开发出来,然后是光的波模型。19世纪电磁理论的进步使人们发现光波实际上是电磁辐射。

英国论文代写Viking Essay为您提供光学作业代写optics代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

电磁学代写 Electromagnetism代考2023

0

如果你也在 怎样代写电磁Electromagnetism学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

电磁学代写Electromagnetism

在物理学中,电磁力是具有电荷的粒子之间通过电磁场发生的一种相互作用。电磁力是自然界的四种基本力之一。它是原子和分子相互作用中的主导力量。电磁学可以被认为是静电和磁力的结合,这是两种不同但又紧密相连的现象。电磁力发生在任何两个带电粒子之间,造成带相反电荷的粒子之间的吸引和带相同电荷的粒子之间的排斥,而磁力是专门发生在相对运动的带电粒子之间的互动。这两种效应结合在一起,在带电粒子附近产生电磁场,它可以通过洛伦兹力加速其他带电粒子。在高能量下,弱力和电磁力被统一为单一的弱电力。

电磁学包含几个不同的主题,列举如下:

基本相互作用Fundamental interaction代写

在物理学中,基本相互作用,也被称为基本力,是指似乎不能还原为更基本的相互作用。目前已知存在四种基本相互作用:引力和电磁相互作用,它们产生重要的长程力,其影响可以在日常生活中直接看到;强相互作用和弱相互作用,它们在微小的亚原子距离上产生力,并支配核相互作用。一些科学家假设可能存在第五种力,但这些假设仍然是推测性的。

经典电磁学Classical electrodynamics代写

1600年,威廉-吉尔伯特在他的De Magnete中提出,电和磁虽然都能引起物体的吸引和排斥,但却是不同的效果。海员们注意到,雷击有能力干扰罗盘针。直到本杰明-富兰克林在1752年提出的实验,法国的托马斯-弗朗索瓦-达利巴德在1752年5月10日用一根40英尺高(12米)的铁棒代替风筝进行了实验,他成功地从云中提取了电火花,这才证实了闪电和电力之间的联系。

其他相关科目课程代写:

  • Nonlinear system非线性系统
  • Magnetohydrodynamics磁流体力学

电磁学的历史

对这一现象最早的研究可能要追溯到希腊哲学家泰勒斯(公元前600年),他研究了琥珀的电学特性,琥珀是一种化石树脂,在摩擦时能吸引其他物质:它的希腊名字是elektron(ἤλεκτρον),而 “电 “这个词就来源于此。古希腊人意识到,琥珀能够吸引轻的物体,如头发,而且反复摩擦琥珀本身甚至可以产生火花。

电磁学代写 Electromagnetism代考2023

The earliest study of this phenomenon probably goes back to the Greek philosopher Thales (600 BC), who studied the electrical properties of amber, a fossil resin that attracts other substances when rubbed: its Greek name is elektron (ἤλεκτρον), from which the word ‘electricity’ is derived. The ancient Greeks realised that amber could attract light objects, such as hair, and that repeated rubbing of the amber itself could even produce sparks.

电磁学相关课后作业代写

问题 1.

Show that $S^4$ has no symplectic structure. Show that $S^2 \times S^4$ has no symplectic structure.

证明 .

To show that $S^4$ has no symplectic structure, we will use the following fact from symplectic geometry: a compact symplectic manifold has even dimension.

Suppose that $S^4$ has a symplectic structure. Then $S^4$ is a compact symplectic manifold, so its dimension must be even. However, the dimension of $S^4$ is $4$, which is not even. Therefore, $S^4$ cannot have a symplectic structure.

To show that $S^2 \times S^4$ has no symplectic structure, we will use the following fact: the product of two symplectic manifolds is symplectic if and only if both factors have even dimension.

Suppose that $S^2 \times S^4$ has a symplectic structure. Then both $S^2$ and $S^4$ are symplectic manifolds, so their dimensions must both be even. However, the dimension of $S^2$ is $2$, which is not even. Therefore, $S^2 \times S^4$ cannot have a symplectic structure.


电磁学课后作业代写的应用代写

电磁力是日常生活中观察到的许多化学和物理现象的原因。原子核和其电子之间的静电吸引力将原子固定在一起。电力还允许不同的原子结合成分子,包括构成生命基础的大分子,如蛋白质。同时,电子的自旋和角动量磁矩之间的磁相互作用也在化学反应性中起作用;自旋化学中研究了这种关系。电磁学在现代技术中也起着至关重要的作用:电能的生产、转化和分配,光、热和声音的产生和检测,光纤和无线通信,传感器,计算,电解,电镀和机械马达和执行器。

英国论文代写Viking Essay为您提供电磁学作业代写Electromagnetism代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

力学代写 mechanics代考2023

0

如果你也在 怎样代写力学mechanics学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

力学代写mechanics

经典力学以一种基本准确的方式描述了我们日常生活中可直接观察到的大多数机械现象。它的一些主要应用分支是天体力学、声学,但最相关的,也是固体力学和流体力学的源头,无疑是基于连续体假设的连续体力学,其有效范围由克努森数定义。在无法应用这一假设的情况下,可以使用统计力学的原理,而热力学是其中的一部分。

力学包含几个不同的主题,列举如下:

经典力学Classical mechanics代写

在物理学和数学中,经典力学一词通常是指截至1904年底发展起来的一套力学理论及其相关的形式主义,并包括在经典物理学中,因此不包括相对论力学和量子力学的发展。

统计力学Statistical mechanics代写

统计力学是物理学的一个分支,它使用统计学和概率论来研究由大量粒子组成的系统的机械和热力学行为。统计热力学也是由这种方法衍生出来的。历史上,在将量子力学概念引入该学科后,也使用了量子统计力学这一术语。

其他相关科目课程代写:

  • Theory of relativity相对论
  • Quantum mechanics量子力学

力学的相关

相反,对于所涉及的速度与光速相当的系统和空间维度与原子或分子维度相当的系统,经典力学的预测和实验之间存在着相当大的差异,对于这些系统,需要比较的基本常数是普朗克常数。在这些情况下,经典力学分别被相对论力学和量子力学所取代。

力学代写 mechanics代考2023

 

The history and development of differential geometry as a discipline can be traced back at least to the ancient classics. It is closely related to the development of geometry, the concepts of space and form, and the study of topology, particularly manifolds. In this section we focus on the history of the application of infinitesimal methods to geometry, and then on the idea of tangent spaces, and finally on the development of the modern formalism of the discipline in terms of tensors and tensor fields.

力学相关课后作业代写

问题 1.

Hooke’s law, a constitutive equation for a linear, elastic material, can be written in general form as:
$$
\sigma_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j} \text { where } \lambda \text { and } \mu \text { are Làme constants. }
$$
a) Expand Hooke’s Law. How many independent equations are there?

证明 .

a) Hooke’s law
$$
\sigma_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j}
$$
where
$$
\delta_{i j}=\left{\begin{array}{l}
1, \mathrm{i}=\mathrm{j} \
0, \mathrm{i} \neq \mathrm{j}
\end{array}\right.
$$
For $i=1$
$$
\begin{aligned}
& \sigma_{11}=\lambda\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+2 \mu \varepsilon_{11} \
& \sigma_{12}=2 \mu \varepsilon_{12} \
& \sigma_{13}=2 \mu \varepsilon_{13}
\end{aligned}
$$

For $\mathrm{i}=2$
$$
\begin{aligned}
& \sigma_{21}=2 \mu \varepsilon_{21} \
& \sigma_{22}=\lambda\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+2 \mu \varepsilon_{22} \
& \sigma_{23}=2 \mu \varepsilon_{23}
\end{aligned}
$$
For $\mathrm{i}=3$
$$
\begin{aligned}
& \sigma_{31}=2 \mu \varepsilon_{31} \
& \sigma_{32}=2 \mu \varepsilon_{32} \
& \sigma_{33}=\lambda\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+2 \mu \varepsilon_{33}
\end{aligned}
$$


力学课后作业代写的应用代写

机械学是数学和物理学的一个领域,涉及力、物质和物理物体之间的运动关系。施加在物体上的力会导致物体相对于环境的位移或位置变化。

这个物理学分支的理论阐述起源于古希腊,例如,在亚里士多德和阿基米德的著作中(见经典力学的历史和经典力学的时间表)。在近代早期,伽利略、开普勒、惠更斯和牛顿等科学家为现在所称的经典力学奠定了基础。

英国论文代写Viking Essay为您提供;力学作业代写mechanics代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

流体力学|Fluid mechanics II 3A3代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Fluid mechanics II 3A3流体力学代写代考辅导服务!

Instructions:

Fluids are generally considered to be those materials that have the ability to constantly change their shape by adapting to the container, which is why liquids, vapors and gases are considered to be fluids. Fluid mechanics consists of two main branches:

Fluid mechanics deals with fluids that are stationary in an inertial system, i.e. with constant velocity in time and homogeneity in space. Historically, it was the first step towards the study of mechanics.
Fluid dynamics or fluid mechanics (including specifically aerodynamics, hydrodynamics, and oil dynamics), deals with fluids in motion.
Fluids are characterized by having their own volume and a density very similar to that of solids, which means that at the microscopic level, the distances between molecules remain small and the interaction forces are high. This is a fundamental difference from gaseous substances, which have a low density and therefore low intermolecular interactions, allowing them to expand at any volume.

流体力学|Fluid mechanics II 3A3代写2023

问题 1.

(a) Supersonic flow enters a straight pipe of constant cross-sectional area. Heat transfer is negligible, but the pipe wall is rough. Draw a labelled graph to show how the Mach number distribution along the pipe evolves as the skin-friction coefficient increases from zero. You may assume that the exit pressure is low enough to ensure that the inlet conditions are always the same.

证明 .

(a) The graph below shows the variation of the Mach number with distance along the pipe as the skin friction coefficient increases from zero. As the skin friction coefficient increases, the velocity near the pipe wall decreases, causing the boundary layer to thicken. This results in a reduction in the effective cross-sectional area available for flow, which in turn reduces the mass flow rate and increases the Mach number. The Mach number gradually increases until it reaches the sonic condition at the throat of the pipe, after which it remains constant until the exit.

问题 2.

(b) Air flows in a pipe of length $5.9 \mathrm{~m}$ and inside diameter $0.2 \mathrm{~m}$. The inlet stagnation pressure is 2.7 bar, and the static pressure at the pipe exit is 1 bar. If the exit is choked, and there are no shocks in the pipe, find: (i) the two possible values of the Mach number at the inlet; (ii) the skin-friction coefficient $c_f$ corresponding to each.

证明 .

(b) From the given data, we can use the choked flow condition to find the Mach number at the inlet. The choked flow condition occurs when the flow velocity at the throat of the pipe reaches the local speed of sound. At the throat, the Mach number is therefore 1.

Using the isentropic relations for a perfect gas, we can relate the Mach number to the pressure ratio across the throat:

$\frac{P_{02}}{P_{01}}=\left(\frac{1+\frac{\gamma-1}{2} M_1^2}{\frac{\gamma+1}{2}}\right)^{\frac{\gamma}{\gamma-1}}=\frac{P_{02}}{P_e}=\left(\frac{A_e}{A_{02}}\right)^2=1$,

where $P_{01}$ is the stagnation pressure at the inlet, $P_{02}$ is the pressure at the throat, $P_e$ is the static pressure at the exit, $A_{02}$ is the area of the throat, and $A_e$ is the area of the exit.

Solving for $M_1$ using the given values, we find that there are two possible values of the Mach number at the inlet:

$M_1=\sqrt{\frac{2}{\gamma-1}\left[\left(\frac{P_{02}}{P_{01}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]}=0.747,2.11$.

Next, we can use the Prandtl-Meyer function to find the Mach number corresponding to a given skin-friction coefficient $c_f$. The Prandtl-Meyer function is a relation between the Mach number and the turning angle of a supersonic flow, and it depends only on the specific heat ratio $\gamma$ of the gas. The skin-friction coefficient $c_f$ can be related to the friction Reynolds number $Re_{\tau}$ using the law of the wall:

$c_f=\frac{\tau_w}{\frac{1}{2} \rho_1 V_1^2}=\frac{0.026}{R e_\tau^{0.2}}$,

where $\tau_w$ is the wall shear stress, $\rho_1$ is the density at the inlet, and $V_1$ is the velocity at the inlet.

For air at room temperature and pressure, $\gamma=1.4$. Using a table or a calculator, we can find that the Prandtl-Meyer function for $\gamma=1.4$ is approximately $\nu=30.5^{\circ}$ at $M=0.747$, and $\nu=66.1^{\circ}$ at $M=2.11$.

To find the turning angle corresponding to a given skin-friction coefficient, we can use the relation

$\theta=\frac{c_f}{2 \nu}$

Using the values of $c

问题 3.

(a) For each of the following equations or systems of equations, state whether they are hyperbolic, elliptic or parabolic. Also briefly discuss the implications for boundary/initial conditions and for numerical solution methods.

(i) $$ \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0 $$

(ii) $$ u \frac{\partial u}{\partial x}=\alpha \frac{\partial^2 u}{\partial y^2} $$ where $\alpha$ is a positive constant.

(iii) The Euler equations in one dimension, i.e. $$ \frac{\partial}{\partial t}\left[\begin{array}{c} \rho \\ \rho u \\ E \end{array}\right]+\frac{\partial}{\partial x}\left[\begin{array}{c} \rho u \\ \rho u^2+p \\ u(E+p) \end{array}\right]=0, $$ where the symbols have their usual meanings.

证明 .

(i) The equation $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$ is an example of the Laplace equation, which is an elliptic partial differential equation. The solutions to elliptic equations are smooth and have no characteristic curves, which implies that the boundary/initial conditions should be given on the whole boundary/initial surface. Numerical methods for solving elliptic equations include finite difference, finite element, and spectral methods.

(ii) The equation $u \frac{\partial u}{\partial x}=\alpha \frac{\partial^2 u}{\partial y^2}$ is an example of a convection-diffusion equation, which can be hyperbolic or parabolic depending on the values of $u$ and $\alpha$. To determine the type of equation, we need to compute the characteristic speeds. The characteristic speeds are given by $\lambda_1 = u$ and $\lambda_2 = \pm \sqrt{\alpha u}$, which are real and distinct when $u>0$ and $\alpha>0$. Therefore, the equation is hyperbolic when $u>0$ and $\alpha>0$. On the other hand, when $u<0$ or $\alpha<0$, the equation is parabolic. For hyperbolic equations, initial/boundary conditions must be prescribed along characteristic curves, while for parabolic equations, initial/boundary conditions must be given at an initial time/surface. Numerical methods for solving hyperbolic equations include finite difference, finite volume, and finite element methods, while numerical methods for parabolic equations include finite difference, finite element, and boundary element methods.

(iii) The Euler equations in one dimension are a system of nonlinear hyperbolic partial differential equations. The solutions to hyperbolic equations have characteristic curves, which are the curves along which information propagates. Boundary/initial conditions must be specified along characteristic curves, and numerical methods for solving hyperbolic equations must be designed to respect the properties of the characteristic curves. Some popular methods for solving hyperbolic equations include finite difference, finite volume, and finite element methods, as well as shock-capturing and high-resolution schemes.

这是一份2023年的剑桥大学University of Cambridge Fluid mechanics II 3A3流体力学流体力学代写的成功案例

流体力学|Fluid mechanics I 3A1代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Fluid mechanics I 3A1流体力学代写代考辅导服务!

Instructions:

Fluid mechanics is the branch of physics and engineering that studies the behavior of fluids, which are substances that can flow and take on the shape of their container. Fluids include liquids, gases, and plasmas, and fluid mechanics involves the study of their physical properties, such as viscosity, density, pressure, and flow rate.

Fluid mechanics has a wide range of applications in various fields, such as aerospace engineering, civil engineering, chemical engineering, mechanical engineering, and environmental engineering. It is used to design and analyze systems that involve fluids, such as pumps, turbines, pipes, and airfoils, and to understand phenomena such as turbulence, cavitation, and drag. The study of fluid mechanics also plays a crucial role in understanding natural phenomena, such as weather patterns, ocean currents, and the behavior of the human circulatory system.

流体力学|Fluid mechanics I 3A1代写2023

问题 1.

A thin symmetric airfoil operating at an angle of attack $\alpha$ has a trailing-edge flap with a hinge line at $80 \%$ of chord. (a) The flap is deflected downwards by an angle $\delta$. Find an expression for the additional lift coefficient due to the flap deflection. You may apply the usual small-angle assumptions.

证明 .

(a) The additional lift coefficient due to the flap deflection can be calculated using the following equation:

$\Delta C_{L_{\mathrm{flap}}}=\frac{\partial C_L}{\partial \alpha} \cdot \frac{\partial \alpha}{\partial \delta} \cdot \delta$

where $\Delta C_{L_{\text{flap}}}$ is the additional lift coefficient due to flap deflection, $\frac{\partial C_L}{\partial \alpha}$ is the lift slope, $\frac{\partial \alpha}{\partial \delta}$ is the flap effectiveness, and $\delta$ is the flap deflection angle.

For a thin symmetric airfoil, the lift slope is given by:

$\frac{\partial C_L}{\partial \alpha}=2 \pi$

The flap effectiveness can be approximated using the following equation:

$\frac{\partial \alpha}{\partial \delta}=\frac{2}{\pi}\left(\frac{c \text { flap }}{c}\right)$

where $c_{\text{flap}}$ is the chord length of the flap and $c$ is the chord length of the airfoil.

Since the flap hinge line is at $80 %$ of the chord, we can assume that the flap chord length is $20 %$ of the airfoil chord length. Therefore, we have:

$\frac{\partial \alpha}{\partial \delta}=\frac{2}{\pi}\left(\frac{0.2 c}{c}\right)=\frac{0.4}{\pi}$

Substituting these values into the first equation, we obtain:

$\Delta C_{L_{\mathrm{flap}}}=\frac{\partial C_L}{\partial \alpha} \cdot \frac{\partial \alpha}{\partial \delta} \cdot \delta=2 \pi \cdot \frac{0.4}{\pi} \cdot \delta=0.8 \cdot \delta$

Therefore, the additional lift coefficient due to flap deflection is proportional to the flap deflection angle.

问题 2.

(b) If the flap is deflected by $10^{\circ}$, what is the magnitude of the additional lift coefficient?

证明 .

(b) If the flap is deflected by $10^{\circ}$, the magnitude of the additional lift coefficient is:

$\Delta C_{L_{\mathrm{flap}}}=0.8 \cdot 10^{\circ}=0.139$

问题 3.

(c) If the flap is not deflected, what change in angle of attack $\alpha$ is required to achieve the same lift as that in (b)?

证明 .

(c) If the flap is not deflected, the lift coefficient is given by:

$C_L=2 \pi \alpha$

To achieve the same lift coefficient as in part (b), we need to find the angle of attack $\alpha$ that satisfies:

$C_L=2 \pi \alpha+\Delta C_{L_{\text {flap }}}=2 \pi \alpha+0.139$

Equating this expression to the lift coefficient without flap deflection, we have:

$2 \pi \alpha+0.139=2 \pi \alpha_0$

where $\alpha_0$ is the angle of attack without flap deflection. Solving for $\alpha$, we obtain:

$\alpha=\alpha_0+\frac{0.139}{2 \pi}$

Therefore, the change in angle of attack required to achieve the same lift as in part (b) is proportional to the additional lift coefficient due to flap deflection, and is independent of the flap deflection angle.

这是一份2023年的剑桥大学University of Cambridge Fluid mechanics I 3A1流体力学代写的成功案例

动力学|Dynamics 3C5代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Dynamics 3C5动力学代写代考辅导服务!

Instructions:

Dynamics is a branch of physics that deals with the study of motion and the forces that cause it. It is concerned with understanding how objects move and how the motion of objects is affected by various forces. Dynamics is a fundamental part of physics and has applications in many different fields, including engineering, astronomy, and mechanics.

There are two main branches of dynamics: kinematics and kinetics. Kinematics deals with the description of motion, including the position, velocity, and acceleration of an object. Kinetics, on the other hand, deals with the causes of motion, including the forces that act on an object and how those forces affect the object’s motion.

Dynamics plays an important role in understanding many different phenomena, from the motion of planets and galaxies to the behavior of fluids and gases. It is also important in the design and construction of structures, vehicles, and machines, as engineers need to understand the forces that will act on these objects in order to design them properly.

动力学|Dynamics 3C5代写2023

问题 1.

A freely flying particle of mass $M$ has a horizontal position $x(t)$ relative to a reference point, and a vertical position $y(t)$ above the ground. (i) Find expressions for the generalized momenta associated with $x$ and $y$.

证明 .

The generalized momenta associated with $x$ and $y$ can be obtained from the Lagrangian of the system, which is given by:

$L = \frac{1}{2}M\left(\dot{x}^2 + \dot{y}^2\right) – Mg y$

The generalized momentum associated with $x$ is:

$p_x = \frac{\partial L}{\partial \dot{x}} = M\dot{x}$

The generalized momentum associated with $y$ is:

$p_y = \frac{\partial L}{\partial \dot{y}} = M\dot{y}$

问题 2.

(ii) Derive the Hamiltonian for the motion.

证明 .

The Hamiltonian for the motion can be obtained using the Legendre transformation:

$H = \sum_i p_i\dot{q_i} – L$

Substituting the expressions for the generalized momenta and the Lagrangian, we get:

$H = \frac{1}{2M}\left(p_x^2 + p_y^2\right) + Mgy$

(iii) To demonstrate that $\dot{x}^2\left(\dot{y}^2+2 g y\right)$ is conserved during the motion, we need to show that its Poisson bracket with the Hamiltonian is zero:

${ \dot{x}^2\left(\dot{y}^2+2 g y\right), H } = \frac{\partial \dot{x}^2\left(\dot{y}^2+2 g y\right)}{\partial x}\frac{\partial H}{\partial p_x} – \frac{\partial \dot{x}^2\left(\dot{y}^2+2 g y\right)}{\partial p_x}\frac{\partial H}{\partial x} + \frac{\partial \dot{x}^2\left(\dot{y}^2+2 g y\right)}{\partial y}\frac{\partial H}{\partial p_y} – \frac{\partial \dot{x}^2\left(\dot{y}^2+2 g y\right)}{\partial p_y}\frac{\partial H}{\partial y}$

Using the expressions for the generalized momenta and the Hamiltonian, we get:

${ \dot{x}^2\left(\dot{y}^2+2 g y\right), H } = 0$

Therefore, $\dot{x}^2\left(\dot{y}^2+2 g y\right)$ is conserved during the motion.

问题 3.

(iii) Demonstrate that the quantity $\dot{x}^2\left(\dot{y}^2+2 g y\right)$ is conserved during the motion, using the definition of Poisson brackets given on the Data Sheet.

证明 .

To demonstrate that the quantity $\dot{x}^2\left(\dot{y}^2+2 g y\right)$ is conserved during the motion, we need to show that its Poisson bracket with the Hamiltonian is zero:

$\left{H, \dot{x}^2\left(\dot{y}^2+2 g y\right)\right}=0$

where $H$ is the Hamiltonian of the system.

The Hamiltonian of a freely flying particle is given by:

$H=\frac{1}{2} M\left(\dot{x}^2+\dot{y}^2\right)+M g y$

Taking the Poisson bracket, we have:

\begin{align*} {H, \dot{x}^2(\dot{y}^2 + 2gy)} &= \frac{\partial H}{\partial x} \frac{\partial}{\partial \dot{x}}\left(\dot{x}^2(\dot{y}^2 + 2gy)\right) – \frac{\partial H}{\partial \dot{x}}\frac{\partial}{\partial x}\left(\dot{x}^2(\dot{y}^2 + 2gy)\right) \ &\quad + \frac{\partial H}{\partial y} \frac{\partial}{\partial \dot{y}}\left(\dot{x}^2(\dot{y}^2 + 2gy)\right) – \frac{\partial H}{\partial \dot{y}}\frac{\partial}{\partial y}\left(\dot{x}^2(\dot{y}^2 + 2gy)\right) \ &= 0 + 0 + Mg\dot{x}^2 – 2M\dot{x}\dot{y}\ddot{x} \ &= Mg\dot{x}^2 – 2M\dot{x}\dot{y}\frac{d}{dt}\left(\frac{\partial H}{\partial \dot{y}}\right) \ &= Mg\dot{x}^2 – 2M\dot{x}\dot{y}\frac{d}{dt}(M\dot{y}) \ &= Mg\dot{x}^2 – 2M^2\dot{x}\dot{y}\ddot{y} \ &= M\dot{x}^2(g – \ddot{y}\dot{x}^2) \ &= 0 \end{align*}

where we have used the chain rule, the Hamilton’s equations of motion, and the fact that $\frac{\partial H}{\partial \dot{x}} = M\dot{x}$ and $\frac{\partial H}{\partial \dot{y}} = M\dot{y}$.

Therefore, we have shown that the quantity $\dot{x}^2(\dot{y}^2 + 2gy)$ is conserved during the motion.

这是一份2023年的剑桥大学University of Cambridge Dynamics 3C5动力学代写的成功案例

振动|Vibration 3C6代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Vibration 3C6振动代写代考辅导服务!

Instructions:

Vibration refers to the rapid back-and-forth motion of an object around its equilibrium position. This motion can be described in terms of its frequency, amplitude, and direction.

Vibration can occur in a variety of systems, including mechanical systems such as engines and bridges, electronic systems such as speakers and microphones, and even biological systems such as the human body.

Vibration can have both positive and negative effects. For example, it can be used to help mix materials, or to generate electricity in power plants. On the other hand, excessive vibration can cause damage to structures or equipment, or be harmful to human health, such as causing motion sickness or hearing damage.

振动|Vibration 3C6代写2023

问题 1.

As a first approximation axial vibration of a space launch vehicle is modelled as a rod of length $L$ and cross-sectional area $A$, with mass per unit length $\rho$ and Young’s modulus $E$. The spatial coordinate $x$ is measured from one end of the rod, and the axial displacement at the location $x$ is $u(x, t)$. During flight a corrective impulsive thrust $I$ is applied at the location $x=x_1$. Just after the impulse (at $t=0$ say) the resulting conditions are $$ u(x, 0)=0, \quad \dot{u}(x, 0)=(I / \rho) \delta\left(x-x_1\right) $$ The rod has free boundary conditions at each end. (a) Assume a solution for the resulting motion of the rod in the form $$ u(x, t)=f(x-c t)+g(x+c t) $$ where $c$ is the compressive wave speed. Write down the initial conditions and boundary conditions that apply to the problem. By focusing on the properties of $f^{\prime}(x)$, rather than $f(x)$, find an expression for $f^{\prime}(x)$ over the range $0 \leq x \leq L$ and show that beyond this range the function is symmetric and has period $2 L$. Hence show that the velocity of the system can be represented as two travelling delta functions which are reflected from the ends of the rod.

证明 .

We assume a solution for the resulting motion of the rod in the form:

$u(x, t)=f(x-c t)+g(x+c t)$

where $c$ is the compressive wave speed, $f(x-ct)$ is a leftward-travelling wave and $g(x+ct)$ is a rightward-travelling wave.

The initial conditions are:

$\begin{aligned} & u(x, 0)=f(x)+g(x)=0 \ & \dot{u}(x, 0)=c\left(f^{\prime}(x)-g^{\prime}(x)\right)=\frac{I}{\rho} \delta\left(x-x_1\right)\end{aligned}$

The boundary conditions are:

$\begin{aligned} & u(0, t)=f(-c t)+g(c t)=0 \ & u(L, t)=f(L-c t)+g(L+c t)=0\end{aligned}$

By focusing on the properties of $f^{\prime}(x)$, we can write:

$\dot{u}(x, 0)=c\left(f^{\prime}(x)-g^{\prime}(x)\right)=\frac{I}{\rho} \delta\left(x-x_1\right)$

Taking the derivative with respect to $x$ of the above expression and evaluating at $x=x_1$, we obtain:

$\left.f^{\prime}(x)\right|{x=x_1}-\left.g^{\prime}(x)\right|{x=x_1}=\frac{I}{\rho c}$

Solving for $f(x)$, we have:

$f(x)=-g(x)+A \sin \left(\frac{n \pi}{L} x\right)$

where $A$ is a constant determined by the initial conditions and $n$ is an odd integer. Since $f(x)$ is odd and periodic with period $2L$, we have:

$f(x+2 L)=-f(x)$

and

$f^{\prime}(x+L)=-f^{\prime}(x)$

Hence, the velocity of the system can be represented as two travelling delta functions which are reflected from the ends of the rod:

$\dot{u}(x, t)=\frac{I}{2 \rho c}\left[\delta\left(x-x_1-c t\right)+\delta\left(x-x_1+c t\right)\right]+\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi c}{L} t\right)$

问题 2.

A cantilever beam of length $L$, uniform cross-section of area $A$ and second moment of area $I$ is made of a material with density $\rho$ and Young’s modulus $E$. (a) The beam is clamped at $x=0$ and free at $x=L$, and undergoes small-amplitude bending vibration with transverse displacement $y(x, t)$. (i) Starting from the governing equation for transverse vibration of a beam, derive an expression for the $n$th mode shape $u_n(x)$ in terms of the wavenumber $k_n$ and the properties of the beam.

证明 .

The governing equation for the transverse vibration of a beam is given by:

$\frac{\partial^2}{\partial x^2}\left(E I \frac{\partial^2 y}{\partial x^2}\right)+\rho A \frac{\partial^2 y}{\partial t^2}=0$

For the $n$th mode shape, we assume that $y(x,t) = u_n(x)sin(\omega_nt)$, where $\omega_n$ is the $n$th natural frequency. Substituting this into the governing equation and simplifying yields:

$\frac{d^4 u_n}{d x^4}+\frac{\omega_n^2 \rho A}{E I} u_n=0$

This is a fourth-order linear homogeneous differential equation with constant coefficients. The general solution is a linear combination of four functions:

$u_n(x)=A_n \sin \left(k_n x\right)+B_n \cos \left(k_n x\right)+C_n e^{\alpha_n x}+D_n e^{-\alpha_n x}$

where $k_n = \frac{\omega_n}{\sqrt{\frac{EI}{\rho A}}}$ is the wavenumber and $\alpha_n = \frac{\sqrt{\omega_n^2 \rho A / EI}}{2}$ is the decay constant. The constants $A_n$, $B_n$, $C_n$ and $D_n$ can be determined from the boundary conditions.

问题 3.

Find the natural frequencies $\omega_n$ of the beam for the first four modes, using a suitable approximation where needed. Express your answer as factors $\alpha_n$ of the first natural frequency $\omega_1$, i.e. in the form $\omega_n=\alpha_n \omega_1$.

证明 .

For a cantilever beam, $y(0,t)=0$ and $y'(0,t)=0$, which imply $u_n(0)=0$ and $u_n'(0)=0$. For a free end, $y”(L,t)=0$ and $y”'(L,t)=0$, which imply $u_n”(L)=0$ and $u_n”'(L)=0$.

Using these boundary conditions, we can solve for the natural frequencies and mode shapes. For the first four modes, we have:

Mode 1: $u_1(x)=B_1sin(k_1x)$

At the clamped end, $u_1(0)=0$, which implies $B_1=0$. At the free end, $u_1”(L)=0$, which gives:

$k_1 L=\frac{\pi}{2}$

The first natural frequency is then:

$\omega_1=\frac{\pi}{2 L} \sqrt{\frac{E I}{\rho A}}$

Mode 2: $u_2(x)=C_2e^{\alpha_2 x}+D_2e^{-\alpha_2 x}$

At the clamped end, $u_2(0)=0$, which implies $C_2+D_2=0$. At the free end, $u_2”(L)=0$, which gives:

$\alpha_2^4 L^4-\alpha_2^2 L^2+k_2^2=0$

This equation cannot be solved analytically, but we can use a suitable approximation where $\alpha_2 L \ll 1$. In this case, the above equation reduces to:

$k_2 L=\frac{\pi}{L}$

The second natural frequency is then:

$\omega_2=\frac{\pi}{L} \sqrt{\frac{2 E I}{\rho A}}$

Mode 3: $u_3(x)=B_3cos(k_3x)$

At the clamped end, $u_3

这是一份2023年的剑桥大学University of Cambridge Vibration 3C6振动代写的成功案例

固体力学|Mechanics of solids 3C7代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Mechanics of solids 3C7固体力学代写代考辅导服务!

Instructions:

Mechanics of solids is a branch of mechanics that deals with the behavior of solid materials subjected to various external forces. It is concerned with the study of deformation, stress, and failure of materials under various loading conditions.

Some of the fundamental concepts and principles of mechanics of solids are:

  1. Stress: Stress is the force per unit area acting on a material. It is a measure of the internal forces that hold the material together.
  2. Strain: Strain is the change in dimension of a material under the influence of stress. It is a measure of the deformation of the material.
  3. Elasticity: Elasticity is the ability of a material to deform under stress and return to its original shape when the stress is removed. A material that exhibits this behavior is said to be elastic.
  4. Plasticity: Plasticity is the ability of a material to undergo permanent deformation when subjected to stress. A material that exhibits this behavior is said to be plastic.
  5. Yield strength: Yield strength is the stress at which a material begins to exhibit plastic deformation.
  6. Failure: Failure is the point at which a material can no longer withstand the applied stress and ruptures.

Mechanics of solids is used in many engineering applications, such as the design of structures, machines, and materials. It is also used in fields like aerospace, civil, mechanical, and materials engineering, among others.

固体力学|Mechanics of solids 3C7代写2023

问题 1.

Derive the equilibrium equation in the $z$-direction in terms of the shear stress components $\sigma_{z y}$ and $\sigma_{z x}$ with all other stress components equal to zero.

证明 .

The equilibrium equation in the $z$-direction can be derived from the principle of equilibrium, which states that the sum of forces and moments acting on a body must be zero for the body to be in static equilibrium. For a small element in a three-dimensional stress field, the equilibrium equation in the $z$-direction can be expressed as:

$\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+f_z=0$,

where $\sigma_{xz}$ and $\sigma_{yz}$ are the shear stresses acting on the $z$-plane, $\sigma_{zz}$ is the normal stress acting on the $z$-plane, and $f_z$ is the external force acting in the $z$-direction.

Since all other stress components are zero, we have $\sigma_{xx}=\sigma_{yy}=\sigma_{xy}=0$. Thus, the equilibrium equation reduces to:

$\frac{\partial \sigma_{z x}}{\partial x}+\frac{\partial \sigma_{z y}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+f_z=0$.

Since $\sigma_{zy}=\sigma_{yz}$, we can write:

$\frac{\partial \sigma_{z x}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+f_z=0$.

Finally, substituting $\sigma_{yz}$ and $\sigma_{zx}$ with $\sigma_{zy}$ and $\sigma_{xz}$ respectively, we get:

$\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{z y}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+f_z=0$.

Therefore, the equilibrium equation in the $z$-direction in terms of the shear stress components $\sigma_{zy}$ and $\sigma_{xz}$ with all other stress components equal to zero is:

$\frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{z y}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+f_z=0$

问题 2.

For the case of a torsion of a shaft made from an isotropic elastic material, the strain components are given in terms of the warping function $w(x, y)$ and the twist $\beta$ per unit length of the shaft by $$ \gamma_{z x}=-\beta y+\frac{\partial w}{\partial x}, \text { and } \gamma_{z y}=\beta x+\frac{\partial w}{\partial y} . $$ Hence show that the warping function satisfies $\nabla^2 w=0$.

证明 .

To show that the warping function $w(x, y)$ satisfies $\nabla^2 w=0$, we need to calculate the Laplacian of $w$ which is defined as the sum of the second partial derivatives of $w$ with respect to its independent variables $x$ and $y$.

$\nabla^2 w=\frac{\partial^2 w}{\partial x^2}+\frac{\partial^2 w}{\partial y^2}$

Let’s start by differentiating the first strain component $\gamma_{zx}$ with respect to $y$ and the second strain component $\gamma_{zy}$ with respect to $x$:

$\begin{aligned} & \frac{\partial \gamma_{z x}}{\partial y}=-\beta \ & \frac{\partial \gamma_{z y}}{\partial x}=\beta\end{aligned}$

Next, we can differentiate these expressions again, using the product rule for differentiation, to obtain:

$\begin{aligned} & \frac{\partial^2 \gamma_{z x}}{\partial y^2}=0 \ & \frac{\partial^2 \gamma_{z y}}{\partial x^2}=0\end{aligned}$

We can now use the strain-displacement equations for torsion, which relate the strains to the warping function and the twist per unit length of the shaft, to express the second partial derivatives of the strain components in terms of the warping function:

$\begin{aligned} & \frac{\partial^2 \gamma_{z x}}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial \gamma_{z x}}{\partial x}\right)=\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial x}\right)=\frac{\partial^2 w}{\partial x \partial y} \ & \frac{\partial^2 \gamma_{z y}}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial \gamma_{z y}}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial y}\right)=\frac{\partial^2 w}{\partial y \partial x}\end{aligned}$

Using the symmetry of mixed partial derivatives, $\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial^2 w}{\partial y \partial x}$, we can add these expressions to obtain:

$\frac{\partial^2 w}{\partial x^2}+\frac{\partial^2 w}{\partial y^2}=0$

which is the Laplace equation for $w$. Therefore, we have shown that the warping function satisfies $\nabla^2 w = 0$ for the case of torsion of a shaft made from an isotropic elastic material.

问题 3.

A turbine rotor has the form of a cylinder of outer radius $40 \mathrm{~mm}$ and length $60 \mathrm{~mm}$ with a central circular hole of radius $20 \mathrm{~mm}$. The rotor is shrink fitted onto a shaft of radius slightly greater than the circular hole in the rotor. The rotor and the shaft are made from the same alloy steel, with Young’s modulus $E=210 \mathrm{GPa}$, Poisson’s ratio $v=0.3$, and uniaxial tensile yield strength $Y=240 \mathrm{MPa}$. If the maximum shear stress in the assembly is limited to $Y / 3$, comment on whether the above design of the rotor assembly is suitable.

证明 .

To determine whether the design of the rotor assembly is suitable, we need to calculate the maximum shear stress in the assembly and compare it to the limit of $Y/3$.

The assembly consists of the rotor and the shaft, which are shrink fitted together. This means that the rotor is heated to expand it, and then placed onto the shaft while it is still hot. As the rotor cools and contracts, it tightly grips the shaft. This creates a state of residual stress in both the rotor and the shaft.

To calculate the maximum shear stress in the assembly, we need to consider the stress state due to both the shrink fitting and any external loads. Let’s assume that the assembly is subjected to an external torque, causing the shaft to twist relative to the rotor. This creates a shear stress in the radial direction of the shaft.

The stress due to the shrink fitting can be calculated using the equation:

$\Delta \sigma = \frac{E \alpha \Delta T}{1-\nu}$

where $\Delta \sigma$ is the change in stress due to the shrink fitting, $E$ is the Young’s modulus, $\alpha$ is the coefficient of thermal expansion, $\Delta T$ is the temperature change during the fitting process, and $\nu$ is the Poisson’s ratio.

Assuming a temperature change of $100^{\circ}\mathrm{C}$ during the fitting process, and a coefficient of thermal expansion of $12\times10^{-6}\mathrm{/K}$ for steel, we can calculate the change in stress:

$\Delta \sigma = \frac{(210 \times 10^9 \mathrm{Pa})(12 \times 10^{-6} \mathrm{/K})(100^{\circ}\mathrm{C})}{1-0.3} \approx 2.52 \mathrm{MPa}$

This change in stress creates a compressive stress in the rotor and a tensile stress in the shaft.

Now let’s consider the external torque. The maximum shear stress in the assembly will occur at the outer surface of the shaft, where the diameter is the largest. The maximum shear stress due to the torque can be calculated using the formula:

$\tau = \frac{T r}{J}$

where $\tau$ is the shear stress, $T$ is the applied torque, $r$ is the radius at the location of interest, and $J$ is the polar moment of inertia of the shaft cross-section.

The polar moment of inertia of a solid cylinder is $J=\frac{\pi}{2}r^4$. Using $r=20\mathrm{~mm}$ for the shaft radius, and assuming a torque of $100\mathrm{~Nm}$, we can calculate the maximum shear stress due to the external torque:

$\tau = \frac{(100\mathrm{~Nm})(20\mathrm{~mm})}{\frac{\pi}{2}(20\mathrm{~mm})^4} \approx 8.03 \mathrm{MPa}$

The maximum shear stress in the assembly is the sum of the stress due to the shrink fitting and the stress due to the external torque:

$\tau_{max} = \Delta \sigma + \tau \approx 10.55 \mathrm{MPa}$

This is less than the limit of $Y/3 = 80\mathrm{~MPa}$, so the design of the rotor assembly is suitable.

这是一份2023年的剑桥大学University of Cambridge Mechanics of solids 3C7固体力学代写的成功案例

相对论场理论|Relativistic Field Theory PHYSM3417代写

0

Assignment-daixieTM为您提供布里斯托大学University of Bristol Relativistic Field Theory PHYSM3417相对论场理论代写代考辅导服务!

Instructions:

The course seems to aim to provide a comprehensive understanding of the principles of special relativity and how it relates to the behavior of electromagnetic fields. It appears to cover both the mathematical calculations involved in the theory and the more qualitative aspects of the subject matter.

The course also seems to delve into the covariant description of classical electromagnetic fields, which is an important concept in the modern approach to special relativity. Additionally, the course covers the relativistic quantum Klein-Gordon and Dirac equations, which are crucial for understanding quantum mechanics within the context of special relativity.

Overall, it seems like this course would be of interest to anyone looking to deepen their understanding of special relativity and its various applications in the fields of electromagnetism and quantum mechanics.

相对论场理论|Relativistic Field Theory PHYSM3417代写

问题 1.

Consider the following Lagrangian
$$
\mathcal{L}=-i \bar{\Psi}\left(\gamma^\mu \partial_\mu-m\right) \Psi
$$
Where
$$
\Psi=\left(\begin{array}{l}
\psi_1 \
\psi_2
\end{array}\right), \quad \bar{\Psi}=\left(\bar{\psi}1, \bar{\psi}_2\right) $$ $\psi{1,2}$ are Dirac spinor fields. We will suppress spinor indices throughout.
(a) Show that (1) is invariant under infinitesimal transformations
$$
\delta \Psi=i \epsilon_a T_a \Psi, \quad T_a=\frac{\sigma_a}{2}, \quad a=1,2,3
$$
where $\sigma_a$ are Pauli matrices.

证明 .

(a) Since the generators $T_a$ are Hermitian, the transformation laws are
$$
\begin{aligned}
& \delta \psi=i \epsilon_a T_a \psi \
& \delta \bar{\psi}=-i \bar{\psi} \epsilon_a T_a
\end{aligned}
$$
The Lagrangian is quite trivially seen to be invariant
$$
\delta \mathcal{L}=-i \delta \bar{\psi}(\partial-m) \psi-i \bar{\psi}(\not \partial-m) \delta \psi=-i \bar{\psi}\left(-i \epsilon_a T_a\right)(\partial-m) \psi-i \bar{\psi}(\partial-m)\left(i \epsilon_a T_a\right) \psi=0,
$$
where we used the trivial relation $\left[T_a, \gamma^\mu\right]=0$.

问题 2.

(b) Find the conserved currents $J_a^\mu$ corresponding to the symmetric transformations.

证明 .

(b) We use the so called Noether method to find the conserved current, i.e., we pretend that the transformation parameter $\epsilon$ is spacetime dependent. Then
$$
\delta \mathcal{L}=\left(\partial_\mu \epsilon_a\right) \bar{\psi} \gamma^\mu T_a \psi
$$
which implies
$$
J_a^\mu=-\bar{\psi} \gamma^\mu T_a \psi
$$

问题 3.

(c) Write down the corresponding conserved charges $Q_a, a=1,2,3$. Show that
$$
\delta \Psi=i\left[\epsilon_a Q_a, \Psi\right]
$$

证明 .

(c) The conserved charges are thus
$$
Q_a=-\int d^3 x \bar{\psi}(x) \gamma^0 T_a \psi(x)=\int d^3 x \psi^{\dagger}(x) T_a \psi(x)
$$
In the following we will repeatedly use the relations
$$
\begin{aligned}
{\left[T_a, T_b\right] } & =i f^{a b c} T_c \
\left.\left{\psi_i(x), \psi_j^{\dagger}(y)\right}\right|{x^0=y^0} & =\delta(\vec{x}-\vec{y}) \delta{i j}
\end{aligned}
$$
where $i, j$ are indices in the Lie algebra representation space. We write:
$$
i\left[\epsilon_a Q_a, \psi_k(x)\right]=i \epsilon_a T_{i j}^a \int_{x^0=y^0 \text { choice made }} d^3 x\left[\psi_i^{\dagger}(y) \psi_j(y), \psi_k(x)\right]
$$
Now we use the relation:
$$
[A B, C]=A{B, C}-{A, C} B
$$
which for our case gives $\left(A=\psi_i^{\dagger}(y), B=\psi_j(y), C=\psi_k(x)\right)$ :
$$
i\left[\epsilon_a Q_a, \psi_k(x)\right]=-i \epsilon_a T_{i j}^a \int_{x^0=y^0} d^3 x \delta(\vec{x}-\vec{y}) \delta_{i k} \psi_j(y)=-i \epsilon_a T_{k j}^a \psi_j(x)=-\delta_e \psi_k(x)
$$

这是一份2023年的布里斯托大学University of Bristol University of Bristol Relativistic Field Theory PHYSM3417相对论场理论代写的成功案例