概率与统计 Probability & statistics 1B MA10212

0

这是一份BATH巴斯大学MA10212作业代写的成功案例

概率与统计 Probability & statistics 1B MA10212
问题 1.

This point of view also leads the way to how one should define the expected value of a continuous random variable. Let, for example, $X$ be a continuous random variable whose probability density function $f$ is zero outside the interval $[0,1]$. It seems reasonable to approximate $X$ by the discrete random variable $Y$, taking the values
$$
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1
$$
with as probabilities the masses that $X$ assigns to the intervals $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ :
$$
\mathrm{P}\left(Y=\frac{k}{n}\right)=\mathrm{P}\left(\frac{k-1}{n} \leq X \leq \frac{k}{n}\right)=\int_{(k-1) / n}^{k / n} f(x) \mathrm{d} x
$$

证明 .

We have a good idea of the size of this probability. For large $n$, it can be approximated well in terms of $f$ :
$$
\mathrm{P}\left(Y=\frac{k}{n}\right)=\int_{k / n-1 / n}^{k / n} f(x) \mathrm{d} x \approx \frac{1}{n} f\left(\frac{k}{n}\right) .
$$
The “center-of-gravity” interpretation suggests that the expectation $\mathrm{E}[Y]$ of $Y$ should approximate the expectation $\mathrm{E}[X]$ of $X$. We have
$$
\mathrm{E}[Y]=\sum_{k=1}^{n} \frac{k}{n} \mathrm{P}\left(Y=\frac{k}{n}\right) \approx \sum_{k=1}^{n} \frac{k}{n} f\left(\frac{k}{n}\right) \frac{1}{n}
$$
By the definition of a definite integral, for large $n$ the right-hand side is close to
$$
\int_{0}^{1} x f(x) \mathrm{d} x .
$$
This motivates the following definition.

英国论文代写Viking Essay为您提供作业代写代考服务

MA10212 COURSE NOTES :

THE CHANGE-OF-VARIA BLE FORMULA. Let $X$ be a random variable, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
If $X$ is discrete, taking the values $a_{1}, a_{2}, \ldots$, then
$$
\mathrm{E}[g(X)]=\sum_{i} g\left(a_{i}\right) \mathrm{P}\left(X=a_{i}\right)
$$
If $X$ is continuous, with probability density function $f$, then
$$
\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) \mathrm{d} x
$$








概率与统计|Probability And Statistics I4CCM141A

0

这是一份KCL伦敦大学 4CCM141A作业代写的成功案例

概率与统计|Probability And Statistics I4CCM141A
问题 1.


The pf for the Poisson distribution is
$$
p_{k}=\frac{e^{-\lambda} \lambda^{k}}{k !}, \quad k=0,1,2, \ldots
$$
The probability generating function from Example $3.6$ is
$$
P(z)=e^{\lambda(z-1)}, \quad \lambda>0 .
$$


证明 .

The mean and variance can be computed from the probability generating function as follows:
$$
\begin{aligned}
\mathrm{E}(N) &=P^{\prime}(1)=\lambda \
\mathrm{E}[N(N-1)] &=P^{\prime \prime}(1)=\lambda^{2} \
\operatorname{Var}(N) &=\mathrm{E}[N(N-1)]+\mathrm{E}(N)-[\mathrm{E}(N)]^{2} \
&=\lambda^{2}+\lambda-\lambda^{2} \
&=\lambda
\end{aligned}
$$

英国论文代写Viking Essay为您提供作业代写代考服务

4CCM141A COURSE NOTES :


It is not difficult to show that the probability generating function for the negative binomial distribution is
$$
P(z)=[1-\beta(z-1)]^{-r} .
$$
From this it follows that the mean and variance of the negative binomial distribution are
$$
\mathrm{E}(N)=r \beta \text { and } \operatorname{Var}(N)=r \beta(1+\beta)
$$





概率与统计|Probability and Statistics代写 MATH 3081

0

这是一份northeastern东北大学(美国)  MATH 3081作业代写的成功案

概率与统计|Probability and Statistics代写 MATH 3081
问题 1.

$$
A\left(B_{Q}\right)=\prod_{h=1}^{r} A\left(B_{q h}\right)
$$
Using these points and weights, the response model becomes
$$
z_{i j q}=x_{i j}^{\prime} \beta+z_{i j}^{\prime} T B_{q},
$$

证明 .

and so the conditional likelihood is
$$
\ell\left(\boldsymbol{Y}{i} \mid \boldsymbol{B}{q}\right)=\prod_{j=1}^{n_{i}} \Psi\left(z_{i j q}\right)^{Y_{i j}}\left[1-\Psi\left(z_{i j q}\right)\right]^{1-Y_{i j}}
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

MATH 3081COURSE NOTES :

$$
\frac{\partial \log L}{\partial \eta}=\sum_{i=1}^{N}\left[h\left(\boldsymbol{Y}{i}\right)\right]^{-1} \int{\boldsymbol{\theta}} \frac{\partial \ell_{i}}{\partial \eta} g(\boldsymbol{\theta}) d \boldsymbol{\theta}
$$
where
$$
\ell_{i}=\ell\left(\boldsymbol{Y}{i} \mid \boldsymbol{\theta}\right)=\prod{j=1}^{n_{i}} \prod_{c=1}^{C}\left(p_{i j c}\right)^{y_{i j c}}
$$
and
$$
p_{i j c}=P_{i j c}-P_{i j, c-1} .
$$