复数分析/密码学和代码 Complex Analysis II/Cryptography and Codes MATH2011-WE01/MATH30120-WE01/MATH3401-WE01

0

这是一份durham杜伦大学MATH2011-WE01/MATH30120-WE01/MATH3401-WE01作业代写的成功案例

复数分析/密码学和代码 Complex Analysis II/Cryptography and Codes MATH2011-WE01/MATH30120-WE01/MATH3401-WE01
问题 1.

Finally, we define algorithm $A^{\prime \prime}$. On input $y=f(x)$, the algorithm selects $j \in{1, \ldots, \ell}$ with probability $2^{-2 j+1}$ (and halts with no output otherwise). It invokes the preceding implementation of algorithm $A^{\prime}$ on input $y$ with parameter $\varepsilon \stackrel{\text { def }}{=} 2^{-j-1} / \ell$ and retums whatever $A^{\prime}$ does. The expected running time of $A^{\prime \prime}$ is
$$
\sum_{j=1}^{\ell} 2^{-2 j+1} \cdot O\left(\frac{n^{2}}{\left(2^{-j-1} / \ell\right)^{2}}\right) \cdot\left(t_{G}(n)+\log \left(n \cdot 2^{j+1} \ell\right)\right)=O\left(n^{2} \cdot \ell^{3}\right) \cdot t_{G}(n)
$$


证明 .

(assuming $t_{G}(n)=\Omega(\ell \log n)$ ). Letting $i \leq \ell$ be an index satisfying Claim $2.5 .4 .1$ (and letting $S_{n}$ be the corresponding set), we consider the case in which $j$ (selected by $A^{\prime \prime}$ ) is greater than or equal to $i$. By Claim 2.5.4.2, in such a case, and for $x \in S_{n}$, algorithm $A^{\prime}$ inverts $f$ on $f(x)$ with probability at least $\frac{1}{2}$. Using $i \leq \ell$ $\left(=\log {2}(1 / \varepsilon(n))\right)$, we get $$ \begin{aligned} \operatorname{Pr}\left[A^{\prime \prime}\left(f\left(U{n}\right)\right)=U_{n}\right] & \geq \operatorname{Pr}\left[U_{n} \in S_{n}\right] \cdot \operatorname{Pr}[j \geq i] \cdot \frac{1}{2} \
& \geq 2^{i-1} \varepsilon(n) \cdot 2^{-2 i+1} \cdot \frac{1}{2} \
& \geq \varepsilon(n) \cdot 2^{-\ell} \cdot \frac{1}{2}=\frac{\varepsilon(n)^{2}}{2}
\end{aligned}
$$
The proposition follows.

英国论文代写Viking Essay为您提供作业代写代考服务

MATH43220-WE01/MATH3341-WE01/MATH4031-WE01 COURSE NOTES :

Let $\left{G_{n}\right}_{n \in \mathbb{N}}$ be a family of $d$-regular graphs, so that $G_{n}$ has vertex set ${0,1}^{n}$ and self-loops at every vertex. Consider a labeling of the edges incident to each vertex (using the labels $1,2, \ldots, d$ ). Define $g_{l}(x)$ to be the vertex reachable from vertex $x$ by following the edge labeled $l$. Let $f:{0,1}^{} \rightarrow{0,1}^{}$ be a $1-1$ length-preserving function, and let $\lambda$ denote the empty sequence (over ${1,2, \ldots, d}$ ). Then for every $k \geq 0, x \in{0,1}^{n}$ and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} \in{1,2, \ldots, d}$, define $F(x, \lambda)=x$ and
$$
F\left(x, \sigma_{1} \sigma_{2} \cdots \sigma_{k}\right)=\sigma_{1}, F\left(g_{\sigma_{1}}(f(x)), \sigma_{2}, \ldots, \sigma_{k}\right)
$$
That is,
$$
\begin{aligned}
F\left(x, \sigma_{1} \sigma_{2} \cdots \sigma_{k}\right) &=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, y \
y &=g_{\sigma_{k}}\left(f\left(\cdots\left(g_{\sigma_{2}}\left(f\left(g_{\sigma_{1}}(f(x))\right)\right)\right) \cdots \cdot\right)\right)
\end{aligned}
$$
where
For every $k: \mathbb{N} \rightarrow \mathbb{N}$, define $F_{k}(\alpha) \stackrel{\text { def }}{=} F\left(x, \sigma_{1}, \ldots, \sigma_{t}\right)$, where $\alpha$ is parsed into $\left(x, \sigma_{1}, \ldots, \sigma_{t}\right)$, so that $t=k(|x|)$ and $\sigma_{i} \in{1,2, \ldots, d}$.








复杂分析| Complex Analysis代写 MT3503

0

这是一份andrews圣安德鲁斯大学 MT3503作业代写的成功案例

复杂分析| Complex Analysis代写 MT3503
问题 1.

we see that $\Delta_{i}$ is asymptotically independent of $i$ in the large $c$ limit, turning into a self-consistency equation for $\Delta$, viz.
$$
\Delta=\frac{1}{i \lambda_{\varepsilon}+J^{2} \Delta}
$$
This is a quadratic equation for $\Delta$, which is solved by
$$
\Delta_{1,2}=-\mathrm{i} \frac{\lambda_{\varepsilon}}{2 J^{2}} \pm \frac{1}{2 J^{2}} \sqrt{4 J^{2}-\lambda_{\varepsilon}^{2}}
$$


证明 .

Taking the limit $\varepsilon \rightarrow 0$ we have
$$
\operatorname{Re} \Delta_{i}=\operatorname{Re} \Delta= \begin{cases}\frac{1}{2 J^{2}} \sqrt{4 J^{2}-\lambda^{2}} & ;|\lambda| \leq 2 J \ 0 & ;|\lambda|>2 J\end{cases}
$$
which when inserted into finally gives
$$
\rho(\lambda)=\frac{1}{2 \pi J^{2}} \sqrt{4 J^{2}-\lambda^{2}}, \quad|\lambda| \leq 2 J
$$


英国论文代写Viking Essay为您提供作业代写代考服务

MT3503 COURSE NOTES :

To show that the Gaussian integral
$$
I=\int_{-\infty}^{\infty} \mathrm{d} x \mathrm{e}^{-x^{2}} .
$$
is given by $I=\sqrt{\pi}$, compute
$$
I^{2}=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} y \mathrm{e}^{-x^{2}-y^{2}} .
$$
Introducing polar coordinates $x=r \cos (\varphi), y=r \sin (\varphi)$, one has
$$
\begin{aligned}
I^{2} &=\int_{0}^{2 \pi} \mathrm{d} \varphi \int_{0}^{\infty} \mathrm{d} r r \mathrm{e}^{-r^{2}} . \
&=\frac{1}{2} \int_{0}^{2 \pi} \mathrm{d} \varphi=\pi,
\end{aligned}
$$





复分析|Complex Analysis代写5CCM212A

0

这是一份kcl伦敦大学学院 5CCM212A作业代写的成功案

复分析|Complex Analysis代写5CCM212A
问题 1.

Let $S=S^{(n)}$ be a positive, even, unimodular matrix. Then $n \equiv 0 \bmod 8$.
Hint. Use the relation
$$
w:=1-\frac{1}{z}=\left(\frac{1}{1-z}-1\right)^{-1}
$$
and transform $\vartheta(S ; w)$ corresponding to these relations, by applying the formulas
$$
\vartheta(S ; z+1)=\vartheta(S ; z), \quad \vartheta(S ;-1 / z)=\sqrt{\frac{z}{i}}^{n} \vartheta(S ; z)
$$


证明 .

This gives the formula
$$
\sqrt{z / i}^{n}=\sqrt{z /(i(1-z))}^{n} \sqrt{(z-1) / i}^{n} .
$$
Now specialize $z=\mathrm{i}$ in it to infer
$$
1=e^{2 \pi \operatorname{in} / 8} \text {, i.e. } n \equiv 0 \quad \bmod 8
$$

英国论文代写Viking Essay为您提供实分析作业代写Real anlysis代考服务

55CCM212A COURSE NOTES :

The derivative of $s \mapsto 1-p^{-s}$ is $(\log p) p^{-s}$, the logarithmic derivative being thus
$$
\frac{(\log p) p^{-s}}{1-p^{-s}}=(\log p) \sum_{\nu=1}^{\infty} p^{-\nu s}
$$
This implies
$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{p}(\log p) \sum_{v=1}^{\infty} p^{-\nu s}
$$