牛顿力学|MATH009 Newtonian Mechanics代写2023

0

Assignment-daixieTM为您提供伦敦大学学院 London’s Global University MATH009 Newtonian Mechanics牛顿力学代写代考辅导服务!

Instructions:

Newtonian mechanics, which is a branch of classical physics that deals with the motion of objects under the influence of forces. The course covers essential concepts such as force, torque, momentum, angular momentum, and energy.

The study of point particles is a common starting point in mechanics, and the course likely covers the dynamics of point particles in great detail, including the classic problem of a central force with the inverse square law. Vector methods are likely emphasized in this course, and you may encounter vector differential equations as well.

Overall, this course will provide a solid foundation in the fundamental principles of classical mechanics and equip you with the tools needed to analyze and solve problems in this area of physics.

MATH009 Newtonian Mechanics牛顿力学

问题 1.

A pendulum consists of a ball of mass $\mathrm{M}$ attached to the end of a rigid bar of length $2 \mathrm{~d}$ which is pivoted at the center. At the other end of the bar is a container (“catch”). A second ball of mass $\mathrm{M} / 2$ is thrown into the catch at a velocity $\mathrm{v}$ where it sticks. For this problem, ignore the mass of the pendulum bar and catch, and treat the balls as if they were point masses (i.e., neglect their individual moments of inertia).
(a) What is the initial angular rotation rate of the pendulum after the incoming ball is caught?

证明 .

(a) The angular momentum of the system relative to the pivot point just prior to the upper ball being caught is:
$$
L=\frac{M}{2} v d
$$
As there are no external torques acting on the system relative to the pivot point during the time of the collision, the angular momentum can be determined as:
$$
L=I \omega=\left(M d^2+\frac{M}{2} d^2\right) \omega=\frac{3}{2} M d^2 \omega
$$
hence,
$$
\omega=\frac{v}{3 d}
$$

问题 2.

(b) How much total mechanical energy is lost when the incoming ball gets stuck in the catch?

证明 .

(b) The energy of the upper ball prior to sticking to the catch is:
$$
E_i=\frac{1}{2} \frac{M}{2} v^2=\frac{1}{4} M v^2
$$
After the collision, all of the energy can be expressed as pure rotation about the stationary pivot point, hence:
$$
E_f=\frac{1}{2} I \omega^2=\frac{1}{2}\left(\frac{3}{2} M d^2\right)\left(\frac{v}{3 d}\right)^2=\frac{1}{12} M v^2
$$
so
$$
\Delta E=E_f-E_i=\frac{1}{6} M v^2
$$

\begin{prob}

(c) What minimum velocity does the incoming ball need in order to invert the pendulum (i.e., rotate it by $180^{\circ}$ )?

\end{prob}

\begin{proof}

(c) Because there are only conservative forces acting (the pivot does not move so it
does no work) total mechanical energy is conserved. Assuming that the bottom of
the swing sets the zeropoint for gravitational potential, at the point that the ball
sticks the total energy is:

$$
E_i=\frac{M}{2}(2 d) g+\frac{1}{12} M v^2
$$
The point at which the pendulum just comes to rest inverted, the bottom mass is at height $2 \mathrm{~d}$ :
$$
E_f=M(2 d) g
$$
With $\Delta \mathrm{E}=0$ this gives:
$$
\begin{aligned}
& 2 M d g=M d g+\frac{1}{12} M v^2 \
& \Rightarrow v=\sqrt{12 d g}
\end{aligned}
$$

这是一份2023年的伦敦大学学院 MATH009 Newtonian Mechanics牛顿力学代写的成功案例

几何学代写 Geometry代考2023

0

如果你也在 怎样代写几何Geometry学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

几何学代写Geometry

几何学(源自古希腊语γεωμετρία(geōmetría)”土地测量”;来自γῆ(gê)”地球,土地 “和μέτρον(métron)”测量”)[引用需要],与算术一样是数学最古老的分支之一。它关注的是空间的属性,如数字的距离、形状、大小和相对位置。一个在几何学领域工作的数学家被称为几何学家。

几何包含几个不同的主题,列举如下:

欧几里德几何Euclidean geometry代写

欧几里得几何是一个归于古希腊数学家欧几里得的数学体系,他在他的几何学教科书《元素》中描述了这个体系。欧几里德的方法包括假设一小套直观上有吸引力的公理(假设),并从这些公理中推导出许多其他命题(定理)。虽然欧几里德的许多结果在以前就已经说过了,但欧几里德是第一个将这些命题组织成一个逻辑系统的人,其中每个结果都是由公理和以前证明的定理来证明的。

点(几何学)Point (geometry)代写

在经典的欧几里得几何学中,点是一个原始的概念,它是空间中一个确切位置的模型,没有长度、宽度或厚度。在现代数学中,点更多地是指某个被称为空间的集合的一个元素。

作为一个原始的概念,意味着点不能被定义在先前定义的对象上。也就是说,一个点只能由它必须满足的一些属性(称为公理)来定义;例如,”正好有一条线穿过两个不同的点”。

其他相关科目课程代写:

  • Line (geometry)线(几何学)
  • Plane (geometry)平(几何学)

几何学的历史

几何学的诞生可以追溯到古埃及人的时代。希罗多德记述说,由于尼罗河洪水的侵蚀和沉积,埃及人的土地范围每年都在变化,因此必须重新计算税收。因此,需要发明土地测量技术(几何学,在这个术语的原始含义中)。

实用几何学的发展是非常古老的,由于它可以有很多应用,也是为了这些应用而发展的,在古代,实用几何学有时被保留给一类具有祭司属性的智者。在古希腊,主要是由于雅典哲学家柏拉图的影响,甚至在他之前,米利都的阿那克西曼德[citation needed],规则和指南针的使用变得很普遍(尽管这些工具似乎已经在其他地方被发明了),最重要的是,使用演示技术的新想法诞生了。希腊的几何学成为地理学、天文学、光学、机械学和其他科学以及各种技术(如导航技术)发展的基础。

在希腊文明中,除了仍在学校学习的欧几里得几何和圆锥理论外,还诞生了球面几何和三角学(平面和球面)。

几何学代写 Geometry代考2023

 

The birth of geometry can be traced back to the time of the ancient Egyptians. Herodotus recounts that due to the erosion and deposition of the Nile floods, the extent of the Egyptians’ land changed from year to year, making it necessary to recalculate taxes. Therefore, it was necessary to invent land surveying techniques (geometry, in the original meaning of the term).

The development of practical geometry is very ancient, and since it could have many applications and was developed for those applications, in ancient times, practical geometry was sometimes reserved for a class of wise men with priestly attributes. In ancient Greece, mainly due to the influence of the Athenian philosopher Plato, and even before him, Anaximander of Miletus [citation needed], the use of rules and compasses became common (although these tools seem to have been invented elsewhere), and above all, new ideas using presentation techniques were born. Greek geometry became the basis for the development of geography, astronomy, optics, mechanics and other sciences, as well as various technologies (such as navigation technology).

In Greek civilization, in addition to Euclidean geometry and conic theory, which were still studied in schools, spherical geometry and trigonometry (plane and sphere) were born.

几何学相关课后作业代写

问题 1.

Show that $S^4$ has no symplectic structure. Show that $S^2 \times S^4$ has no symplectic structure.

证明 .

To show that $S^4$ has no symplectic structure, we will use the following fact from symplectic geometry: a compact symplectic manifold has even dimension.

Suppose that $S^4$ has a symplectic structure. Then $S^4$ is a compact symplectic manifold, so its dimension must be even. However, the dimension of $S^4$ is $4$, which is not even. Therefore, $S^4$ cannot have a symplectic structure.

To show that $S^2 \times S^4$ has no symplectic structure, we will use the following fact: the product of two symplectic manifolds is symplectic if and only if both factors have even dimension.

Suppose that $S^2 \times S^4$ has a symplectic structure. Then both $S^2$ and $S^4$ are symplectic manifolds, so their dimensions must both be even. However, the dimension of $S^2$ is $2$, which is not even. Therefore, $S^2 \times S^4$ cannot have a symplectic structure.


几何学课后作业代写的应用代写

直到19世纪初,几何学与欧几里德几何学相吻合。它将点、线和平面定义为原始概念,并假定某些公理的真实性,即欧几里得公理。从这些公理中,甚至可以推导出复杂的定理,如毕达哥拉斯定理和投影几何的定理。

英国论文代写Viking Essay为您提供几何学作业代写Geometry代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

应用数学|MATH0008 Applied Mathematics代写2023

0

Assignment-daixieTM为您提供伦敦大学学院 London’s Global University MATH0008 Applied Mathematics应用数学代写代考辅导服务!

Instructions:

Qualitative and analytic approaches to differential equations are essential tools for modeling a wide range of physical systems. Qualitative approaches involve using geometric and graphical techniques to understand the behavior of solutions to differential equations, while analytic approaches involve using mathematical techniques to derive explicit formulas for these solutions. By combining these two approaches, you’ll be able to develop a deep understanding of the behavior of mechanical, biological, and other systems.

Stability is another important concept that you’ll be studying. In the context of differential equations, stability refers to the tendency of a system to return to a state of equilibrium after experiencing a disturbance. Understanding the stability of a system is crucial for predicting its behavior over time.

You’ll also be learning about waves and oscillations, which are ubiquitous in mechanical and biological systems. Waves are disturbances that propagate through a medium, while oscillations are periodic movements around a point of equilibrium. Understanding these phenomena is essential for modeling a wide range of systems, from sound waves to the behavior of the heart.

Finally, the course will also introduce you to discrete dynamical systems. These are mathematical models that describe systems that change over time in a stepwise fashion, rather than continuously. Discrete dynamical systems are important for modeling systems that evolve in discrete time steps, such as population growth models or financial models.

应用数学|MATH0008 Applied Mathematics代写2023

问题 1.

Suppose one has two coins $C_1$ and $C_2$. Coin $C_1$ gives head with probability $1 / 2$, while coin $C_2$ gives head with probability $1 / 3$. We pick one of the coins uniformly at random and toss it twice. We get twice the same result. Compute the probability the it was coin $C_1$ being used.

证明 .

Let $H$ be the event that we get heads twice in a row, and let $C_1$ and $C_2$ be the events that we picked coin $C_1$ and coin $C_2$, respectively. We want to compute the probability of $C_1$ given $H$.

Using Bayes’ theorem, we have:

$P\left(C_1 \mid H\right)=\frac{P\left(H \mid C_1\right) P\left(C_1\right)}{P(H)}$

We can compute the probabilities on the right-hand side as follows:

  • $P(H | C_1)$ is the probability of getting heads twice in a row given that we picked coin $C_1$. Since $C_1$ gives head with probability $1/2$, this probability is $(1/2)^2 = 1/4$.
  • $P(C_1)$ is the probability of picking coin $C_1$ in the first place, which is $1/2$.
  • $P(H)$ is the probability of getting heads twice in a row, which we can compute using the law of total probability:

$\begin{aligned} P(H) & =P\left(H \mid C_1\right) P\left(C_1\right)+P\left(H \mid C_2\right) P\left(C_2\right) \ & =\frac{1}{4} \cdot \frac{1}{2}+\left(\frac{1}{3}\right)^2 \cdot \frac{1}{2} \ & =\frac{1}{12}+\frac{1}{18} \ & =\frac{5}{36}\end{aligned}$

Substituting these values into Bayes’ theorem, we get:

$P\left(C_1 \mid H\right)=\frac{(1 / 4) \cdot(1 / 2)}{5 / 36}=\frac{9}{20} \approx 0.45$

Therefore, the probability that we picked coin $C_1$ given that we got heads twice in a row is approximately $0.45$.

问题 2.

You have a biased coin that comes up heads with probability $1 / 3$. Show that the probability of obtaining 80 heads or more from 90 throws is not more than 0.16 .

证明 .

Let $X$ be the number of heads obtained from 90 throws of the biased coin. We have $X \sim \mathrm{Bin}(n=90,p=1/3)$, where $\mathrm{Bin}(n,p)$ denotes a binomial distribution with $n$ trials and success probability $p$. We want to find $P(X \geq 80)$.

We will use the Chebyshev’s inequality, which states that for any random variable $X$ with finite mean $\mu$ and variance $\sigma^2$, and for any positive constant $k$, we have:

$P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^2}$

Applying this inequality to our problem, we have:

$P(X \geq 80)=P(X-\mu \geq 80-\mu) \leq \frac{\operatorname{Var}(X)}{(80-\mu)^2}$

Note that $\mu = np = 90 \cdot 1/3 = 30$ and $\mathrm{Var}(X) = np(1-p) = 90 \cdot 1/3 \cdot 2/3 = 20$. Substituting these values, we get:

$P(X \geq 80) \leq \frac{20}{(80-30)^2}=\frac{1}{25}=0.04$

Thus, the probability of obtaining 80 heads or more from 90 throws is not more than 0.04. However, this is an upper bound obtained by Chebyshev’s inequality, and it may be loose in practice. To get a tighter bound, we can use the normal approximation to the binomial distribution, which is valid when $np$ and $n(1-p)$ are both large enough. In our case, $np=30$ and $n(1-p)=60$, so the normal approximation is reasonable. Using the continuity correction, we have:

$P(X \geq 80) \approx P\left(Z \geq \frac{80+0.5-n p}{\sqrt{n p(1-p)}}\right)$

where $Z$ is a standard normal random variable. Substituting the values, we get:

$P(X \geq 80) \approx P(Z \geq 4.45) \approx 2.4 \times 10^{-6}$

Thus, the probability of obtaining 80 heads or more from 90 throws is extremely small, and certainly not more than 0.16.

问题 3.

Prove that if $C$ is any subset of ${100,101, \ldots, 199}$ with $|C|=51$, then $C$ contains two consecutive integers.

证明 .

We will prove the statement using the Pigeonhole Principle, which states that if $n$ pigeons are placed into $m$ pigeonholes, and $n>m$, then there exists at least one pigeonhole with more than one pigeon.

Consider the set $S={1,2,\ldots,100}$ and the set $T={101,102,\ldots,199}$. Note that $S$ and $T$ are disjoint, and their union is ${1,2,\ldots,199}$.

Suppose for the sake of contradiction that $C$ is a subset of $T$ with $|C|=51$ that does not contain two consecutive integers. Then, $C$ and $C+1={c+1: c\in C}$ are disjoint subsets of $S$ with $|C|=|C+1|=51$. This means that $S$ contains two disjoint subsets $A$ and $B$ with $|A|=|B|=51$.

Now, consider the set of differences $D={b-a: b\in B, a\in A}$, which consists of all the possible differences between an element in $B$ and an element in $A$. Note that $D$ is a subset of ${-99,-98,\ldots,99}$, since the largest difference between an element in $B$ and an element in $A$ is $99$ (when the largest element in $B$ is subtracted from the smallest element in $A$).

Since $|D|=51^2>199$, there must be two distinct pairs $(a_1,b_1)$ and $(a_2,b_2)$ in $A\times B$ with the same difference $b_1-a_1=b_2-a_2$. But then, $b_2-a_1=b_2-a_2+(a_2-a_1)$ is a difference between an element in $B$ and an element in $A$, and $b_2-a_1$ is equal to $b_1-a_1$, which means that $C$ contains two consecutive integers, namely $b_1$ and $a_1+1$. This is a contradiction, so we conclude that any subset $C$ of $T$ with $|C|=51$ must contain two consecutive integers.

这是一份2023年的伦敦大学学院MATH0008 Applied Mathematics应用数学代写的成功案例

力学代写 mechanics代考2023

0

如果你也在 怎样代写力学mechanics学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

力学代写mechanics

经典力学以一种基本准确的方式描述了我们日常生活中可直接观察到的大多数机械现象。它的一些主要应用分支是天体力学、声学,但最相关的,也是固体力学和流体力学的源头,无疑是基于连续体假设的连续体力学,其有效范围由克努森数定义。在无法应用这一假设的情况下,可以使用统计力学的原理,而热力学是其中的一部分。

力学包含几个不同的主题,列举如下:

经典力学Classical mechanics代写

在物理学和数学中,经典力学一词通常是指截至1904年底发展起来的一套力学理论及其相关的形式主义,并包括在经典物理学中,因此不包括相对论力学和量子力学的发展。

统计力学Statistical mechanics代写

统计力学是物理学的一个分支,它使用统计学和概率论来研究由大量粒子组成的系统的机械和热力学行为。统计热力学也是由这种方法衍生出来的。历史上,在将量子力学概念引入该学科后,也使用了量子统计力学这一术语。

其他相关科目课程代写:

  • Theory of relativity相对论
  • Quantum mechanics量子力学

力学的相关

相反,对于所涉及的速度与光速相当的系统和空间维度与原子或分子维度相当的系统,经典力学的预测和实验之间存在着相当大的差异,对于这些系统,需要比较的基本常数是普朗克常数。在这些情况下,经典力学分别被相对论力学和量子力学所取代。

力学代写 mechanics代考2023

 

The history and development of differential geometry as a discipline can be traced back at least to the ancient classics. It is closely related to the development of geometry, the concepts of space and form, and the study of topology, particularly manifolds. In this section we focus on the history of the application of infinitesimal methods to geometry, and then on the idea of tangent spaces, and finally on the development of the modern formalism of the discipline in terms of tensors and tensor fields.

力学相关课后作业代写

问题 1.

Hooke’s law, a constitutive equation for a linear, elastic material, can be written in general form as:
$$
\sigma_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j} \text { where } \lambda \text { and } \mu \text { are Làme constants. }
$$
a) Expand Hooke’s Law. How many independent equations are there?

证明 .

a) Hooke’s law
$$
\sigma_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j}
$$
where
$$
\delta_{i j}=\left{\begin{array}{l}
1, \mathrm{i}=\mathrm{j} \
0, \mathrm{i} \neq \mathrm{j}
\end{array}\right.
$$
For $i=1$
$$
\begin{aligned}
& \sigma_{11}=\lambda\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+2 \mu \varepsilon_{11} \
& \sigma_{12}=2 \mu \varepsilon_{12} \
& \sigma_{13}=2 \mu \varepsilon_{13}
\end{aligned}
$$

For $\mathrm{i}=2$
$$
\begin{aligned}
& \sigma_{21}=2 \mu \varepsilon_{21} \
& \sigma_{22}=\lambda\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+2 \mu \varepsilon_{22} \
& \sigma_{23}=2 \mu \varepsilon_{23}
\end{aligned}
$$
For $\mathrm{i}=3$
$$
\begin{aligned}
& \sigma_{31}=2 \mu \varepsilon_{31} \
& \sigma_{32}=2 \mu \varepsilon_{32} \
& \sigma_{33}=\lambda\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+2 \mu \varepsilon_{33}
\end{aligned}
$$


力学课后作业代写的应用代写

机械学是数学和物理学的一个领域,涉及力、物质和物理物体之间的运动关系。施加在物体上的力会导致物体相对于环境的位移或位置变化。

这个物理学分支的理论阐述起源于古希腊,例如,在亚里士多德和阿基米德的著作中(见经典力学的历史和经典力学的时间表)。在近代早期,伽利略、开普勒、惠更斯和牛顿等科学家为现在所称的经典力学奠定了基础。

英国论文代写Viking Essay为您提供;力学作业代写mechanics代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

代数|MATH0005 Algebra 1代写2023

0

Assignment-daixieTM为您提供伦敦大学学院 London’s Global University MATH0005 Algebra 1代数代写代考辅导服务!

Instructions:

Linear equations are fundamental to many areas of mathematics, science, and engineering, so it’s important to have a strong understanding of them. And it’s great that the course also covers other important topics in modern mathematics, such as logic, set theory, and functions.

By studying these topics in depth, students can develop important problem-solving skills and critical thinking abilities that will serve them well in future courses and in their careers. Additionally, understanding these foundational concepts will allow students to approach more advanced topics with greater ease and confidence.

Overall, it sounds like MATH0005 is an excellent course for anyone looking to build a strong foundation in modern mathematics.

代数|MATH0005 Algebra 1代写2023

问题 1.

(i) Exhibit a proper normal subgroup $V$ of $A_4$. To which group is $V$ isomorphic to?

证明 .

(i) The subgroup $V = {(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}$ is a proper normal subgroup of $A_4$. To see this, note that $V$ is a subgroup of $A_4$ since it is closed under multiplication and inverses. Moreover, it is normal since it is the kernel of the sign homomorphism from $A_4$ to $\mathbb{Z}/2\mathbb{Z}$, which maps even permutations to $0$ and odd permutations to $1$. To see that $V$ is proper, note that it has index $2$ in $A_4$ since $A_4$ has order $12$ and $V$ has order $4$, so $A_4/V$ has order $2$. But there is no subgroup of order $2$ in $A_4$.

The group $V$ is isomorphic to the Klein four-group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

问题 2.

(ii) Give the left cosets of $V$ inside $A_4$.

证明 .

(ii) The left cosets of $V$ inside $A_4$ are $V$ and $\tau V$, where $\tau$ is any transposition not in $V$. For example, if we take $\tau = (1,2)$, then we have

$V={(),(12)(34),(13)(24),(14)(23)}$

and

$\tau V={(12),(12)(34)(12),(13)(24)(12),(14)(23)(12)}$

\begin{prob}

(iii) To which group is $A_4 / V$ isomorphic to?

\end{prob}

\begin{proof}

(iii) The group $A_4/V$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, the cyclic group of order $2$. To see this, note that $A_4/V$ has order $2$, so it is either isomorphic to $\mathbb{Z}/2\mathbb{Z}$ or to the trivial group ${1}$. But if $A_4/V \cong {1}$, then $A_4 = V$, which is false. Therefore, $A_4/V \cong \mathbb{Z}/2\mathbb{Z}$.

这是一份2023年的伦敦大学学院 MATH0005 Algebra 1代写的成功案例

流体力学|Fluid mechanics II 3A3代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Fluid mechanics II 3A3流体力学代写代考辅导服务!

Instructions:

Fluids are generally considered to be those materials that have the ability to constantly change their shape by adapting to the container, which is why liquids, vapors and gases are considered to be fluids. Fluid mechanics consists of two main branches:

Fluid mechanics deals with fluids that are stationary in an inertial system, i.e. with constant velocity in time and homogeneity in space. Historically, it was the first step towards the study of mechanics.
Fluid dynamics or fluid mechanics (including specifically aerodynamics, hydrodynamics, and oil dynamics), deals with fluids in motion.
Fluids are characterized by having their own volume and a density very similar to that of solids, which means that at the microscopic level, the distances between molecules remain small and the interaction forces are high. This is a fundamental difference from gaseous substances, which have a low density and therefore low intermolecular interactions, allowing them to expand at any volume.

流体力学|Fluid mechanics II 3A3代写2023

问题 1.

(a) Supersonic flow enters a straight pipe of constant cross-sectional area. Heat transfer is negligible, but the pipe wall is rough. Draw a labelled graph to show how the Mach number distribution along the pipe evolves as the skin-friction coefficient increases from zero. You may assume that the exit pressure is low enough to ensure that the inlet conditions are always the same.

证明 .

(a) The graph below shows the variation of the Mach number with distance along the pipe as the skin friction coefficient increases from zero. As the skin friction coefficient increases, the velocity near the pipe wall decreases, causing the boundary layer to thicken. This results in a reduction in the effective cross-sectional area available for flow, which in turn reduces the mass flow rate and increases the Mach number. The Mach number gradually increases until it reaches the sonic condition at the throat of the pipe, after which it remains constant until the exit.

问题 2.

(b) Air flows in a pipe of length $5.9 \mathrm{~m}$ and inside diameter $0.2 \mathrm{~m}$. The inlet stagnation pressure is 2.7 bar, and the static pressure at the pipe exit is 1 bar. If the exit is choked, and there are no shocks in the pipe, find: (i) the two possible values of the Mach number at the inlet; (ii) the skin-friction coefficient $c_f$ corresponding to each.

证明 .

(b) From the given data, we can use the choked flow condition to find the Mach number at the inlet. The choked flow condition occurs when the flow velocity at the throat of the pipe reaches the local speed of sound. At the throat, the Mach number is therefore 1.

Using the isentropic relations for a perfect gas, we can relate the Mach number to the pressure ratio across the throat:

$\frac{P_{02}}{P_{01}}=\left(\frac{1+\frac{\gamma-1}{2} M_1^2}{\frac{\gamma+1}{2}}\right)^{\frac{\gamma}{\gamma-1}}=\frac{P_{02}}{P_e}=\left(\frac{A_e}{A_{02}}\right)^2=1$,

where $P_{01}$ is the stagnation pressure at the inlet, $P_{02}$ is the pressure at the throat, $P_e$ is the static pressure at the exit, $A_{02}$ is the area of the throat, and $A_e$ is the area of the exit.

Solving for $M_1$ using the given values, we find that there are two possible values of the Mach number at the inlet:

$M_1=\sqrt{\frac{2}{\gamma-1}\left[\left(\frac{P_{02}}{P_{01}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]}=0.747,2.11$.

Next, we can use the Prandtl-Meyer function to find the Mach number corresponding to a given skin-friction coefficient $c_f$. The Prandtl-Meyer function is a relation between the Mach number and the turning angle of a supersonic flow, and it depends only on the specific heat ratio $\gamma$ of the gas. The skin-friction coefficient $c_f$ can be related to the friction Reynolds number $Re_{\tau}$ using the law of the wall:

$c_f=\frac{\tau_w}{\frac{1}{2} \rho_1 V_1^2}=\frac{0.026}{R e_\tau^{0.2}}$,

where $\tau_w$ is the wall shear stress, $\rho_1$ is the density at the inlet, and $V_1$ is the velocity at the inlet.

For air at room temperature and pressure, $\gamma=1.4$. Using a table or a calculator, we can find that the Prandtl-Meyer function for $\gamma=1.4$ is approximately $\nu=30.5^{\circ}$ at $M=0.747$, and $\nu=66.1^{\circ}$ at $M=2.11$.

To find the turning angle corresponding to a given skin-friction coefficient, we can use the relation

$\theta=\frac{c_f}{2 \nu}$

Using the values of $c

问题 3.

(a) For each of the following equations or systems of equations, state whether they are hyperbolic, elliptic or parabolic. Also briefly discuss the implications for boundary/initial conditions and for numerical solution methods.

(i) $$ \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0 $$

(ii) $$ u \frac{\partial u}{\partial x}=\alpha \frac{\partial^2 u}{\partial y^2} $$ where $\alpha$ is a positive constant.

(iii) The Euler equations in one dimension, i.e. $$ \frac{\partial}{\partial t}\left[\begin{array}{c} \rho \\ \rho u \\ E \end{array}\right]+\frac{\partial}{\partial x}\left[\begin{array}{c} \rho u \\ \rho u^2+p \\ u(E+p) \end{array}\right]=0, $$ where the symbols have their usual meanings.

证明 .

(i) The equation $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$ is an example of the Laplace equation, which is an elliptic partial differential equation. The solutions to elliptic equations are smooth and have no characteristic curves, which implies that the boundary/initial conditions should be given on the whole boundary/initial surface. Numerical methods for solving elliptic equations include finite difference, finite element, and spectral methods.

(ii) The equation $u \frac{\partial u}{\partial x}=\alpha \frac{\partial^2 u}{\partial y^2}$ is an example of a convection-diffusion equation, which can be hyperbolic or parabolic depending on the values of $u$ and $\alpha$. To determine the type of equation, we need to compute the characteristic speeds. The characteristic speeds are given by $\lambda_1 = u$ and $\lambda_2 = \pm \sqrt{\alpha u}$, which are real and distinct when $u>0$ and $\alpha>0$. Therefore, the equation is hyperbolic when $u>0$ and $\alpha>0$. On the other hand, when $u<0$ or $\alpha<0$, the equation is parabolic. For hyperbolic equations, initial/boundary conditions must be prescribed along characteristic curves, while for parabolic equations, initial/boundary conditions must be given at an initial time/surface. Numerical methods for solving hyperbolic equations include finite difference, finite volume, and finite element methods, while numerical methods for parabolic equations include finite difference, finite element, and boundary element methods.

(iii) The Euler equations in one dimension are a system of nonlinear hyperbolic partial differential equations. The solutions to hyperbolic equations have characteristic curves, which are the curves along which information propagates. Boundary/initial conditions must be specified along characteristic curves, and numerical methods for solving hyperbolic equations must be designed to respect the properties of the characteristic curves. Some popular methods for solving hyperbolic equations include finite difference, finite volume, and finite element methods, as well as shock-capturing and high-resolution schemes.

这是一份2023年的剑桥大学University of Cambridge Fluid mechanics II 3A3流体力学流体力学代写的成功案例

数学分析|MATH0003 Analysis 1代写2023

0

Assignment-daixieTM为您提供伦敦大学学院 London’s Global University MATH0003 Analysis 1数学分析代写代考辅导服务!

Instructions:

We will start with the basic properties of real numbers and use them to prove the main results in elementary differential calculus. We assume familiarity with the properties of real numbers such as completeness, order, and the field axioms.

SEQUENCES:

A sequence is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, where $\mathbb{N}$ is the set of natural numbers. We say that a sequence $(a_n)$ converges to a limit $L$ if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n – L| < \epsilon$ for all $n \geq N$. We write $\lim_{n \rightarrow \infty} a_n = L$.

数学分析|MATH0003 Analysis 1代写2023

问题 1.

a) Prove that if $c>1$, the sequence $a_n=\frac{c^n}{n !}$ is decreasing for $n \gg 1$.

证明 .

a) To prove that the sequence $a_n=\frac{c^n}{n!}$ is decreasing for $n\gg1$, we need to show that $a_{n+1} < a_n$ for all $n\gg1$:

\begin{align*} a_{n+1} & = \frac{c^{n+1}}{(n+1)!} \ & = \frac{c}{n+1} \cdot \frac{c^n}{n!} \ & < \frac{c}{n+1} \cdot \frac{c^n}{n!} \quad \text{since } c>1 \ & = \frac{c}{n} \cdot \frac{c^n}{n!} \cdot \frac{n}{n+1} \ & < \frac{c}{n} \cdot \frac{c^n}{n!} \quad \text{since } \frac{n}{n+1} < 1 \ & = a_n \end{align*}

Therefore, $a_n$ is a decreasing sequence for $n\gg1$.

问题 2.

b) Prove $\lim _{n \rightarrow \infty} a_n=0$, by starting at some suitable point $N$ in the sequence and give an estimate of the size of the factors which allows you to use Theorem 3.4.)

证明 .

b) To prove that $\lim_{n\rightarrow\infty}a_n=0$, we will use Theorem 3.4 which states that if there exist constants $C>0$ and $p>0$ such that $|a_{n+1}/a_n|\leq Cn^{-p}$ for all $n\geq N$, where $N$ is some suitable point in the sequence, then $\sum_{n=1}^{\infty}a_n$ converges absolutely.

Let us first find a suitable point $N$ in the sequence. Since $n!$ grows faster than any polynomial in $n$, we expect that $a_n$ will converge to zero faster than $1/n!$. To confirm this, we can take the ratio of consecutive terms:

$\frac{a_{n+1}}{a_n}=\frac{(n+1) !}{2^{n+1}(n+1) !}=\frac{1}{2^{n+1}}$

So we have $|a_{n+1}/a_n|\leq 1/2$, which means that we can take $C=1/2$. Also, we can take $p=1$ since $1/n$ is a decreasing function for $n\geq 1$. Thus, we have $|a_{n+1}/a_n|\leq Cn^{-p}$ for all $n\geq 1$ with $C=1/2$ and $p=1$.

Now we need to find a suitable point $N$ in the sequence. Since $n!$ grows faster than any polynomial in $n$, we expect that $a_n$ will converge to zero faster than $1/n!$. To confirm this, we can solve the inequality $1/2^n\leq \epsilon$, where $\epsilon>0$ is a small number that we want to be close to zero. Taking the logarithm of both sides, we get $n\ln(2)\leq \ln(1/\epsilon)$, which implies that $n\geq (\ln(1/\epsilon))/\ln(2)$. Therefore, we can take $N=\lceil(\ln(1/\epsilon))/\ln(2)\rceil$, where $\lceil x\rceil$ denotes the smallest integer greater than or equal to $x$.

With these values of $C$, $p$, and $N$, we can use Theorem 3.4 to conclude that $\sum_{n=1}^{\infty}a_n$ converges absolutely, which implies that $\lim_{n\rightarrow\infty}a_n=0$.

问题 3.

c) Prove part (b) differently by considering the series $\sum_0^{\infty} a_n$.

证明 .

c) Another way to prove that $\lim_{n\rightarrow\infty}a_n=0$ is to consider the series $\sum_{n=0}^{\infty}a_n$. We can use the ratio test to show that this series converges:

$\lim {n \rightarrow \infty} \frac{a{n+1}}{a_n}=\lim {n \rightarrow \infty} \frac{(n+1) !}{2^{n+1} n !}=\lim {n \rightarrow \infty} \frac{1}{2}=\frac{1}{2}<1$

Therefore, the series $\sum_{n=0}^{\infty}a_n$ converges, which implies that $\lim_{n\rightarrow\infty}a_n=0$ by the nth-term test for convergence.

这是一份2023年的伦敦大学学院 MATH0003 Analysis 1数学分析代写的成功案例

微分几何代写 Differential Geometry代考2023

0

如果你也在 怎样代写微分几何Differential Geometry学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

英国论文代写Viking Essay提供最专业的一站式学术写作服务:Essay代写,Dissertation代写,Assignment代写,Paper代写,网课代修,Exam代考等等。英国论文代写Viking Essay专注为留学生提供Essay代写服务,拥有各个专业的博硕教师团队帮您代写,免费修改及辅导,保证成果完成的效率和质量。同时提供查重检查,使用Turnitin高级账户查重,检测论文不会留痕,写好后检测修改,放心可靠,经得起任何考验!

如需网课帮助,也欢迎选择英国论文代写Viking Essay!与其为国内外上课时差困扰,为国内IP无法登录zoom网课发愁,还不如选择我们高质量的网课托管服务。英国论文代写Viking Essay长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,英国论文代写Viking Essay也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

微分几何代写Differential Geometry

微分几何学是一门研究光滑形状和光滑空间的几何学的数学学科,也被称为光滑流形。它使用微分计算、积分计算、线性代数和多线代数的技术。该领域的起源是远在古代的球面几何研究。它还与天文学、地球的大地测量学以及后来洛巴切夫斯基对双曲几何的研究有关。平滑空间最简单的例子是三维欧几里得空间中的平面和空间曲线和曲面,对这些形状的研究构成了18和19世纪现代微分几何发展的基础。

微分几何包含几个不同的主题,列举如下:

黎曼几何学Riemannian geometry代写

黎曼几何是微分几何的一个分支,研究黎曼流形,定义为具有黎曼公制的光滑流形(在每一点的切线空间上的内积,从点到点平滑变化)。这特别给出了角度、曲线长度、表面积和体积的局部概念。从这些概念中,一些其他的全局量可以通过整合局部贡献而得到。

伪黎曼尼几何学Pseudo-Riemannian geometry代写

伪黎曼几何将黎曼几何推广到公转张量不需要是正无限的情况。这种情况的一个特例是洛伦兹流形,它是爱因斯坦广义相对论引力的数学基础。

其他相关科目课程代写:

  • Finsler manifold芬斯勒流形
  • Symplectic geometry辛几何

微分几何的历史

微分几何作为一门学科的历史和发展,至少可以追溯到古代的古典。它与几何学、空间和形状的概念以及拓扑学,特别是流形的研究的发展密切相关。在这一节中,我们主要关注无限小方法在几何学中的应用历史,以及后来的切线空间思想,并最终在张量和张量场方面发展出该学科的现代形式主义。

微分几何代写 Differential Geometry代考2023

The history and development of differential geometry as a discipline can be traced back at least to the ancient classics. It is closely related to the development of geometry, the concepts of space and form, and the study of topology, particularly manifolds. In this section we focus on the history of the application of infinitesimal methods to geometry, and then on the idea of tangent spaces, and finally on the development of the modern formalism of the discipline in terms of tensors and tensor fields.

微分几何相关课后作业代写

问题 1.

Let $c$ be a regular curve such that $|c(s)| \leq 1$ for all $s$. Suppose that there is a point $t$ where $|c(t)|=1$. Prove that the curvature at that point satisfies $|\kappa(t)| \geq 1$.

证明 .

Let $c$ be a regular curve with arc length parameterization $s$. By definition, the curvature $\kappa(s)$ of the curve $c$ at the point $c(s)$ is given by $\kappa(s) = |\boldsymbol{c}”(s)|$, where $\boldsymbol{c}”(s)$ denotes the second derivative of $\boldsymbol{c}(s)$ with respect to $s$.

Since $|\boldsymbol{c}(s)| \leq 1$ for all $s$, we have $|\boldsymbol{c}'(s)| = 1$ for all $s$. Moreover, since $|\boldsymbol{c}(t)| = 1$, we have $|\boldsymbol{c}'(t)| = 0$, which implies that $\boldsymbol{c}”(t)$ is perpendicular to $\boldsymbol{c}'(t)$. Therefore, we have

$\left|\boldsymbol{c}^{\prime \prime}(t)\right|=\left|\boldsymbol{c}^{\prime \prime}(t) \cdot \frac{c^{\prime}(t)}{\left|c^{\prime}(t)\right|}\right|=\left|c^{\prime \prime}(t) \cdot \frac{c^{\prime}(t)}{\left|c^{\prime}(t)\right|}\right|$.

Now, we observe that $\boldsymbol{c}”(t) \cdot \boldsymbol{c}'(t)$ is the tangential component of $\boldsymbol{c}”(t)$ at the point $c(t)$, which is given by $\boldsymbol{c}”(t) \cdot \boldsymbol{c}'(t) = \frac{d}{ds}\left(|\boldsymbol{c}'(s)|^2\right)\bigg|{s=t} = 2|\boldsymbol{c}'(t)|\boldsymbol{c}”(t) \cdot \boldsymbol{c}'(t) = 0$. Thus, we can write $\boldsymbol{c}”(t) = \boldsymbol{c}”(t){\perp} + \boldsymbol{c}”(t){\parallel}$, where $\boldsymbol{c}”(t){\perp}$ is the perpendicular component of $\boldsymbol{c}”(t)$ to $\boldsymbol{c}'(t)$ and $\boldsymbol{c}”(t){\parallel}$ is the tangential component of $\boldsymbol{c}”(t)$ to $\boldsymbol{c}'(t)$. Since $|\boldsymbol{c}'(t)| = 0$, we have $\boldsymbol{c}”(t){\parallel} = 0$. Therefore, we have

$\left|\boldsymbol{c}^{\prime \prime}(t)\right|=\left|\boldsymbol{c}^{\prime \prime}(t){\perp}\right| \leq\left|\boldsymbol{c}^{\prime \prime}(t)\right|{\max }$

where $|\boldsymbol{c}”(t)|_{\max}$ denotes the maximum value of $|\boldsymbol{c}”(t)|$ over all vectors $\boldsymbol{v}$ perpendicular to $\boldsymbol{c}'(t)$ with $|\boldsymbol{v}| = 1$.

On the other hand, we know that the maximum value of $|\boldsymbol{c}”(t)|$ is attained when $\boldsymbol{c}


微分几何课后作业代写的应用代写

微分几何学在整个数学和自然科学领域都有应用。最突出的是,爱因斯坦在他的广义相对论中使用了微分几何的语言,随后物理学家在发展量子场理论和粒子物理学的标准模型时也使用了这种语言。在物理学之外,微分几何在化学、经济学、工程、控制理论、计算机图形和计算机视觉以及最近的机器学习中也有应用。

英国论文代写Viking Essay为您提供微分几何作业代写Differential Geometry代考服务

英国论文代写Viking Essay代写 订购流程:

第一步: 右侧扫一扫或添加WX客服mytutor01 发送代写^代考任务委托的具体要求

第二步:我们的线上客服收到您的要求后会为您匹配合适的写手,等到写手确认可以接此任务并且给出服务报价后我们将写手的报价转发给您并且收取一定的信息费,等您支付50%的定金后(有可能会向你索要更详细的作业要求)我们开始完成您交给我们的任务。

第三步: 写作完毕后发你Turnitin检测/作业完成截图(根据作业类型而定)文件,你阅读后支付余款后我们发你完整的终稿(代码,手写pdf等)

第四步: 在收到论文后,你可以提出任何修改意见,并与写手一对一讨论,我们非常愿意拉群让您和写手面对面沟通。

建议:因每份任务都具有特殊性,以上交易流程只是大概流程,更加具体的流程烦请添加客服WX免费咨询,30S通过验证,工作时间内2min回复响应,支持大多数课程的加急任务。

英国论文代写Viking Essay代写承诺&保证:

我们英国论文代写Viking Essay的政策协议保证不会将您的所有个人信息或详细信息出售或与第三方或作家共享。 相反,我们使用订单号,订单的月份和日期进行通信,并基于我们的客户与我们公司之间的现有合同,因此,即使在将来下订单时,您的身份也会在整个交易中受到保护。 我们的通信内容已通过SSL加密,以确保您以及您的论文或作业的隐私和安全性。

我们严格的写手团队要求写手“零抄袭”指导我们提供高质量的原创写作服务。 我们的业务使用Turnitin(国际版plag窃检查程序)将所有订单的剽窃报告副本发送给客户,并确保所有交付的任务都是100%原创的。 所有学术写作规则和要求,并遵循后者,包括使用参考文献和文本引用来表示和引用其他来源的内容和引语,方法是使用适当的参考样式和格式来提供高质量的服务和任务 。

我们遵守您论文的所有严格指导方针和要求,并提供至少三次修订,保证您可以拿到完全满意的论文。 仅当客户在下订单过程开始时提供详细而完整的分配说明时,此方法才有效。 我们的公司和作家在完成任务的一半或完成后不能也不会改变订单的任务。 如果作者未能找到来源,内容或未能交付的任务或任务,我们公司仅全额退款。 但是,请放心,由于我们的实时通信以及对订单交付和消费者满意度的严格规定,很少发生这种情况。英国论文代写Viking Essay 代写机构致力于打造出理科全覆盖的代写平台,所以对于很多难度很大的科目都可以提供代写服务,并且收费合理,也提供高质量的售后服务,详情咨询WX:mytutor01 作业稿件在交付之后,我们依然提供了长达30天的修改润色服务,最大程度的保证学生的代写权益。为了您的权益着想,即便最终您没有选择与我们平台合作,但依然不要去相信那些没有资历,价格低于标准的小机构,因为他们浪费的不仅仅只是你的时间和金钱,而是在变相摧毁你的学业。

数学分析|MATH0004 Analysis 2代写2023

0

Assignment-daixieTM为您提供伦敦大学学院 London’s Global University MATH0004 Analysis 2数学分析代写代考辅导服务!

Instructions:

We will start with the basic properties of real numbers and use them to prove the main results in elementary differential calculus. We assume familiarity with the properties of real numbers such as completeness, order, and the field axioms.

SEQUENCES:

A sequence is a function $f: \mathbb{N} \rightarrow \mathbb{R}$, where $\mathbb{N}$ is the set of natural numbers. We say that a sequence $(a_n)$ converges to a limit $L$ if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n – L| < \epsilon$ for all $n \geq N$. We write $\lim_{n \rightarrow \infty} a_n = L$.

数学分析|MATH0004 Analysis 2代写2023

问题 1.

Find the radius of convergence $R$ of $\sum_0^{\infty} \frac{(2 n) ! x^n}{n !(n+1) !}$.

证明 .

We can apply the ratio test to determine the radius of convergence of the given series. Let

$a_n=\frac{(2 n) ! x^n}{n !(n+1) !}$

Then, the ratio of successive terms is

\begin{align*} \frac{a_{n+1}}{a_n} &= \frac{(2(n+1))!x^{n+1}}{(n+1)!(n+2)!} \cdot \frac{n!(n+1)!}{(2n)!x^n} \ &= \frac{(2n+2)(2n+1)x}{(n+2)(n+1)} \ &= \frac{4x^2}{(n+2)(n+1)} \cdot \frac{(2n+1)(2n+2)}{4(n+1)} \ &= \frac{4x^2}{(n+2)(n+1)} \cdot \left(1 + \frac{1}{n+1}\right) \cdot \left(1 + \frac{2}{n+1}\right). \end{align*}

Taking the limit as $n \to \infty$, we get

$\lim {n \rightarrow \infty} \frac{a{n+1}}{a_n}=\lim _{n \rightarrow \infty} \frac{4 x^2}{(n+2)(n+1)} \cdot\left(1+\frac{1}{n+1}\right) \cdot\left(1+\frac{2}{n+1}\right)=4 x^2$.

Therefore, the series converges absolutely if $4x^2 < 1$, or equivalently, $|x| < \frac{1}{2}$. On the other hand, the series diverges if $4x^2 > 1$, or equivalently, $|x| > \frac{1}{2}$. Thus, the radius of convergence is $R = \frac{1}{2}$.

问题 2.

Let $h(n)$ be the largest prime factor of the integer $n>1$, and $s(n)$ be the sum of its prime factors, so $h(12)=3, s(12)=7$.

Prove the sequence ${h(n) / s(n)}, n=2,3,4, \ldots$ has $1 / k$ as a cluster point for every positive integer $k$, but no limit.

证明 .

To show that $1/k$ is a cluster point of the sequence ${h(n)/s(n)}$ for every positive integer $k$, we need to show that for any $\epsilon>0$ and positive integer $k$, there exist infinitely many $n$ such that $|h(n)/s(n)-1/k|<\epsilon$.

Let $\epsilon>0$ and $k$ be given. Choose $p$ to be any prime greater than $k/\epsilon$, and consider the numbers $n=p^2,p^3,\ldots,p^{k+1}$. Note that $h(n)=p$ and $s(n)=1+p+p^2+\cdots+p^k=\frac{p^{k+1}-1}{p-1}$.

For any $n=p^m$ with $2\leq m\leq k+1$, we have

$\left|\frac{h(n)}{s(n)}-\frac{1}{k}\right|=\left|\frac{k p-p^{k+1}}{(p-1)\left(p^{k+1}-1\right)}\right|=\frac{p\left(k-p^k\right)}{(p-1)\left(p^{k+1}-1\right)}<\frac{p(k-p)}{(p-1) p^{k+1}}<\frac{k}{p^k-1}<\epsilon$,

where we used the fact that $p>k/\epsilon$ and $p^{k+1}>kp$. Thus, we have shown that for any $\epsilon>0$ and positive integer $k$, there exist infinitely many $n$ such that $|h(n)/s(n)-1/k|<\epsilon$. Hence, $1/k$ is a cluster point of the sequence ${h(n)/s(n)}$ for every positive integer $k$.

To show that the sequence ${h(n)/s(n)}$ has no limit, we need to find two increasing sequences of integers ${a_n}$ and ${b_n}$ such that $h(a_n)/s(a_n)$ and $h(b_n)/s(b_n)$ have different limits as $n\rightarrow\infty$.

Let ${p_n}$ be the sequence of prime numbers, and define $a_n=p_{2n-1}^2$ and $b_n=p_{2n}^2$. Then we have

$\frac{h\left(a_n\right)}{s\left(a_n\right)}=\frac{p_{2 n-1}}{1+p_{2 n-1}} \rightarrow 1, \quad \frac{h\left(b_n\right)}{s\left(b_n\right)}=\frac{p_{2 n}}{1+p_{2 n}+p_{2 n}^2} \rightarrow 0$,

as $n\rightarrow\infty$, since $p_{2n-1}/(1+p_{2n-1})\rightarrow 1$ and $p_{2n}/(1+p_{2n}+p_{2n}^2)\rightarrow 0$. Therefore, the sequence ${h(n)/s(n)}$ does not have a limit as $n\rightarrow\infty$.

问题 3.

A function $f(x)$ has three distinct zeros $a_0<a_1<a_2$ on an interval $I$, and in addition $f^{\prime}\left(a_2\right)=0$. Assume $f(x)$ has a third derivative $f^{\prime \prime \prime}(x)$ at all points of $I$. Prove there is a point $c \epsilon I$ such that $f^{\prime \prime \prime}(c)=0$.

证明 .

Since $f(x)$ has three distinct zeros on the interval $I$, we know that $f(x)$ changes sign at each of these zeros. Without loss of generality, assume that $f(x)$ is positive on $(a_0, a_1)$, negative on $(a_1, a_2)$, and positive on $(a_2, b)$.

Since $f(x)$ has a local extremum at $x=a_2$ (because $f^{\prime}(a_2)=0$), the second derivative $f^{\prime \prime}(x)$ must change sign at $x=a_2$. Specifically, $f^{\prime \prime}(x)$ is negative on $(a_1, a_2)$ and positive on $(a_2, b)$.

Now consider the third derivative $f^{\prime \prime \prime}(x)$. Since $f^{\prime \prime}(x)$ changes sign at $x=a_2$, we know that $f^{\prime \prime \prime}(x)$ must have a local extremum at $x=a_2$. Without loss of generality, assume that $f^{\prime \prime \prime}(x)$ is negative on $(a_1, a_2)$ and positive on $(a_2, b)$.

Since $f(x)$ changes sign at each of the zeros $a_0<a_1<a_2$, we know that $f(x)$ must have at least one local extremum (a maximum or minimum) between each pair of zeros. Specifically, $f(x)$ has a local minimum at some point $c_1$ in $(a_0, a_1)$, a local maximum at some point $c_2$ in $(a_1, a_2)$, and a local minimum at some point $c_3$ in $(a_2, b)$.

Since $f^{\prime \prime \prime}(x)$ is negative on $(a_1, a_2)$ and positive on $(a_2, b)$, we know that $f^{\prime \prime \prime}(c_2)>0$ and $f^{\prime \prime \prime}(c_3)<0$. Therefore, by the intermediate value theorem, there must be some point $c$ in $(c_2, c_3)$ such that $f^{\prime \prime \prime}(c)=0$, as desired.

这是一份2023年的伦敦大学学院London’s Global University MATH0004 Analysis 2数学分析代写的成功案例

流体力学|Fluid mechanics I 3A1代写2023

0

Assignment-daixieTM为您提供剑桥大学University of Cambridge Fluid mechanics I 3A1流体力学代写代考辅导服务!

Instructions:

Fluid mechanics is the branch of physics and engineering that studies the behavior of fluids, which are substances that can flow and take on the shape of their container. Fluids include liquids, gases, and plasmas, and fluid mechanics involves the study of their physical properties, such as viscosity, density, pressure, and flow rate.

Fluid mechanics has a wide range of applications in various fields, such as aerospace engineering, civil engineering, chemical engineering, mechanical engineering, and environmental engineering. It is used to design and analyze systems that involve fluids, such as pumps, turbines, pipes, and airfoils, and to understand phenomena such as turbulence, cavitation, and drag. The study of fluid mechanics also plays a crucial role in understanding natural phenomena, such as weather patterns, ocean currents, and the behavior of the human circulatory system.

流体力学|Fluid mechanics I 3A1代写2023

问题 1.

A thin symmetric airfoil operating at an angle of attack $\alpha$ has a trailing-edge flap with a hinge line at $80 \%$ of chord. (a) The flap is deflected downwards by an angle $\delta$. Find an expression for the additional lift coefficient due to the flap deflection. You may apply the usual small-angle assumptions.

证明 .

(a) The additional lift coefficient due to the flap deflection can be calculated using the following equation:

$\Delta C_{L_{\mathrm{flap}}}=\frac{\partial C_L}{\partial \alpha} \cdot \frac{\partial \alpha}{\partial \delta} \cdot \delta$

where $\Delta C_{L_{\text{flap}}}$ is the additional lift coefficient due to flap deflection, $\frac{\partial C_L}{\partial \alpha}$ is the lift slope, $\frac{\partial \alpha}{\partial \delta}$ is the flap effectiveness, and $\delta$ is the flap deflection angle.

For a thin symmetric airfoil, the lift slope is given by:

$\frac{\partial C_L}{\partial \alpha}=2 \pi$

The flap effectiveness can be approximated using the following equation:

$\frac{\partial \alpha}{\partial \delta}=\frac{2}{\pi}\left(\frac{c \text { flap }}{c}\right)$

where $c_{\text{flap}}$ is the chord length of the flap and $c$ is the chord length of the airfoil.

Since the flap hinge line is at $80 %$ of the chord, we can assume that the flap chord length is $20 %$ of the airfoil chord length. Therefore, we have:

$\frac{\partial \alpha}{\partial \delta}=\frac{2}{\pi}\left(\frac{0.2 c}{c}\right)=\frac{0.4}{\pi}$

Substituting these values into the first equation, we obtain:

$\Delta C_{L_{\mathrm{flap}}}=\frac{\partial C_L}{\partial \alpha} \cdot \frac{\partial \alpha}{\partial \delta} \cdot \delta=2 \pi \cdot \frac{0.4}{\pi} \cdot \delta=0.8 \cdot \delta$

Therefore, the additional lift coefficient due to flap deflection is proportional to the flap deflection angle.

问题 2.

(b) If the flap is deflected by $10^{\circ}$, what is the magnitude of the additional lift coefficient?

证明 .

(b) If the flap is deflected by $10^{\circ}$, the magnitude of the additional lift coefficient is:

$\Delta C_{L_{\mathrm{flap}}}=0.8 \cdot 10^{\circ}=0.139$

问题 3.

(c) If the flap is not deflected, what change in angle of attack $\alpha$ is required to achieve the same lift as that in (b)?

证明 .

(c) If the flap is not deflected, the lift coefficient is given by:

$C_L=2 \pi \alpha$

To achieve the same lift coefficient as in part (b), we need to find the angle of attack $\alpha$ that satisfies:

$C_L=2 \pi \alpha+\Delta C_{L_{\text {flap }}}=2 \pi \alpha+0.139$

Equating this expression to the lift coefficient without flap deflection, we have:

$2 \pi \alpha+0.139=2 \pi \alpha_0$

where $\alpha_0$ is the angle of attack without flap deflection. Solving for $\alpha$, we obtain:

$\alpha=\alpha_0+\frac{0.139}{2 \pi}$

Therefore, the change in angle of attack required to achieve the same lift as in part (b) is proportional to the additional lift coefficient due to flap deflection, and is independent of the flap deflection angle.

这是一份2023年的剑桥大学University of Cambridge Fluid mechanics I 3A1流体力学代写的成功案例