应用数学的高级方法|MATH4412 Advanced Methods in Applied Mathematics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4412的成功案例

应用数学的高级方法|MATH4412 Advanced Methods in Applied Mathematics代写 Sydney代写


问题 1.

$$
S^{v}+\left(S^{2}\right)^{2}+v+\frac{1}{2}-\frac{1}{4} x^{2}=0
$$
Making the approximations
$$
S^{*} \propto\left(S^{\prime}\right)^{2}, \quad v+\frac{1}{2} \ll \frac{1}{4} x^{2}, \quad x \rightarrow+\infty,
$$
gives the asymptotic differential equation $\left(S^{\prime}\right)^{2} \sim \frac{1}{4} x^{2}(x \rightarrow+\infty)$ whose solutions are
$$
S(x) \sim \pm \frac{1}{2} x^{2}, \quad x \rightarrow+\infty .
$$

证明 .

We have now determined that the possible controlling factors of the leading behavior of $y(x)$ are $e^{t^{2} / 4}$,

We leave as an exercise [Prob. 3.38(b)] the verification that the possible leading behaviors of $y(x)$ are
$$
\begin{array}{ll}
y(x) \sim c_{1} x^{-p-1} e^{x^{2} / 4}, & x \rightarrow+\infty \
y(x) \sim c_{2} x^{2} e^{-x^{*} / 4}, & x \rightarrow+\infty
\end{array}
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4412 COURSE NOTES :

we approach a pole we let
$$
\begin{aligned}
&y(x)=v^{-2}(x) \
&y^{\prime}(x)=-\frac{2}{\sqrt{6} v^{3}(x)}-\frac{1}{2} \sqrt{6} x v(x)-3 v^{2}(x)+v^{3}(x) u(x) .
\end{aligned}
$$
Show that this gives the new system of equations
$$
\begin{aligned}
&v^{\prime}=\frac{1}{\sqrt{6}}+\frac{\sqrt{6}}{4} x v^{4}+\frac{3}{2} v^{5}-\frac{1}{2} u v^{6}, \
&u^{\prime}=\frac{3}{4} x^{2} v+\frac{9}{4} \sqrt{6} x v^{2}+(9-\sqrt{6} u x) v^{3}-\frac{15}{2} u v^{4}+\frac{3}{2} u^{2} v^{3}
\end{aligned}
$$
with initial conditions
$$
v=-\frac{1}{\sqrt{y}}, \quad u=\frac{3}{v}+\frac{\sqrt{6 x}}{2 v^{2}}+\frac{y}{v^{3}}+\frac{2}{\sqrt{6} v^{6}},
$$
and that these new equations may be used to integrate past the location of a pole of $y(x)$.



















应用计算数学|MATH4411 Applied Computational Mathematics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4411的成功案例

应用计算数学|MATH4411 Applied Computational Mathematics代写 Sydney代写


问题 1.

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field $K$ and let $I$ be a monomial ideal of $R$ generated by a finite set of monomials $\left{x^{v_{1}}, \ldots, x^{v} q\right}$. As usual we use $x^{a}$ as abbreviation for $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, where $a=\left(a_{1}, \ldots, a_{n}\right)$ is in $\mathbb{N}^{n}$. The three central objects of study here are the following blowup algebras: (a) the Rees algebra
$$
R[I t]:=R \oplus I t \oplus \cdots \oplus I^{i} t^{i} \oplus \cdots \subset R[t],
$$
where $t$ is a new variable, (b) the associated graded ring
$$
\mathrm{gr}{I}(R):=R / I \oplus I / I^{2} \oplus \cdots \oplus I^{i} / I^{i+1} \oplus \cdots \simeq R[I t] \otimes{R}(R / I)
$$

证明 .

with multiplication
$$
\left(a+I^{i+1}\right)\left(b+I^{j+1}\right)=a b+I^{i+j+1} \quad\left(a \in I^{i}, b \in I^{j}\right),
$$
and (c) the symbolic Rees algebra
$$
R_{s}(I):=R+I^{(1)} t+I^{(2)} t^{2}+\cdots+I^{(i)} t^{i}+\cdots \subset R[t],
$$
where $I^{(i)}$ is the ith symbolic power of $I$.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4411 COURSE NOTES :

If $r \leq n$, then $b \leq n-1$. Thus from now on we may assume $r=n+1$ and takes the simpler form
$$
(\alpha, b)=\lambda_{1}\left(v_{i_{1}}, 1\right)+\cdots+\lambda_{n+1}\left(v_{i_{n+1}}, 1\right)
$$
Consider the cone $C$ generated by $\mathcal{A}^{\prime \prime}=\left{\left(v_{i_{1}}, 1\right), \ldots,\left(v_{i_{n+1}}, 1\right)\right}$. Since $-e_{1}$ is not in $C$, using we obtain a point
$$
x_{0}=\left(1-\lambda_{0}\right)(\alpha, b)+\lambda_{0}\left(-e_{1}\right) \quad\left(0 \leq \lambda_{0}<1\right)
$$



















复杂系统|MATH4079 Complex Analysis代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4079的成功案例

复杂系统|MATH4079 Complex Analysis代写 Sydney代写


问题 1.

In the region $\sigma \geq 2$ the $\zeta$-function is bounded:
$$
|\zeta(s)|=\left|\sum n^{-s}\right| \leq \sum n^{-\sigma} \leq \zeta(2)
$$
The same argument shows that also the derivatives of $\zeta$ are bounded in this region, since one can derive termwise the defining $\zeta$-series. So we can restrict our further considerations to the vertical strip $1<\sigma \leq 2$. Then it is enough to show that
$$
\left|\zeta^{(m)}(s)\right| \leq C_{m}|s| \quad(1<\sigma \leq 2,|t| \geq 1) .
$$

证明 .

For this, we use the integral representation. (It is also possible to use the integral representation

By the product formula, the higher derivatives of $s F(s)$ are a linear combination of $F^{(\nu)}(s)$ and $s F^{(\mu)}(s)$. So it is enough to show that any of the higher derivatives of $F$ is bounded in the vertical strip $1<\sigma \leq 2$. We have:
$$
F^{(m)}(s)=\int_{1}^{\infty}(-\log t)^{m} t^{-s-1} \beta(t) d t .
$$
Using an estimate of the shape
$$
|\log (t)| \leq C_{m}^{\prime} t^{\frac{1}{2 m}} \quad(|t| \geq 1) \quad \text { with a suitable constant } C_{m}^{\prime},
$$
in connection with $|\beta(t)| \leq 1$, we obtain
$$
\left|F^{(m)}(s)\right| \leq C_{m}^{\prime} \int_{1}^{\infty} t^{-\frac{3}{2}} d t<\infty
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4079 COURSE NOTES :

$$
Z(s):=e^{D(s)}
$$
then we have
$$
|Z(\sigma+\mathrm{it})|^{4}|Z(\sigma+2 \mathrm{i} t)||Z(\sigma)|^{3} \geq 1 .
$$
We want to show that this Lemma can be applied to $\zeta(s)=Z(s)$. For this we consider
$$
b_{n}:= \begin{cases}1 / \nu & \text { if } n=p^{\nu}, p \text { prime } \ 0 & \text { else }\end{cases}
$$
Then it holds
$$
D(s)=\sum_{p} \sum_{\nu} \frac{1}{\nu} p^{-\nu s}=\sum_{p}-\log \left(1-p^{-s}\right)
$$
and because of this
$$
e^{D(s)}=\prod_{p}\left(1-p^{-s}\right)^{-1}=\zeta(s) .
$$
We obtain after a trivial transformation



















偏微分方程及应用|MATH4078 PDEs and Applications代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4078的成功案例

偏微分方程及应用|MATH4078 PDEs and Applications代写 Sydney代写


问题 1.

Hence, $\mathcal{X}{1}(t, b) \in L{2, \mathcal{F}}\left(C\left([0, T] ; \mathbf{M}{\infty, \varpi}\right)\right)$ and we can define $r{2}\left(t, \mathcal{X}{1}(b), \omega, q\right)$ as the unique solution of, driven by the input process $\mathcal{X}{1}(t, b)$. Suppose we have already defined $r_{m}\left(t, \mathcal{X}{m-1}(b), \omega, q\right)$ as (unique) solutions of with empirical measure processes $\mathcal{X}{m-1}(t, b) \in L_{2, \mathcal{F}}\left(C\left([0, T] ; \mathbf{M}{\infty, \varepsilon}\right)\right)$ for $m=1, \ldots n$. As before, the solution $r{n}\left(t, \mathcal{X}{n-1}(b), \omega, q\right.$ satisfies the assumptions of Proposition and we define the empirical measure process of $r{n}\left(t, \mathcal{X}{n-1}(b), \omega, q\right)$ by $$ \mathcal{X}{n}(t, b, \omega):=\int \delta_{r_{n}\left(t, \mathcal{X}{n-1, b}, \omega, q\right)} \mathcal{X}{0, b}(\omega, \mathrm{d} q)
$$
Again implies
$$
E \sup {0 \leq t \leq T} \gamma{ए}^{2}\left(\mathcal{X}{n}(t, b)\right) \leq c{T} E \gamma_{\varpi}^{2}\left(\mathcal{X}_{0, b}\right)
$$

证明 .

We show by induction that the right-hand side of equals 0 . First of all, note that
$$
\mathcal{X}{0, b{2}} 1_{\Omega_{b_{1}}}=\mathcal{X}{0, b{1}} 1_{\Omega_{b_{1}}},
$$
because both sides equal $\mathcal{X}{0} 1{\Omega_{b_{1}}}$. If
$$
\mathcal{X}{n-1}\left(\cdot, b{2}, \omega\right) 1_{\Omega_{b_{1}}} \equiv \mathcal{X}{n-1}\left(\cdot, b{1}, \omega\right) 1_{\Omega_{b_{1}}},
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4078 COURSE NOTES :

For $\sigma \in \mathcal{O}(d)$ we define the rotation operator $S{\sigma}$ on $\mathbf{H}{0, \varpi}$ by $$ \left(S{\sigma} f\right)(r):=f_{\sigma}(r):=f(\sigma r) .
$$
Similarly, we define the shift operator $U_{h}$ on $\mathbf{H}{0, \varpi}$, where $h \in \mathbf{R}^{d}$, by $$ \left(U{h} f\right)(r):=f_{h}(r):=f(r+h) .
$$
Moreover, we use $f_{\sigma h}(r)$ to denote the image of the composition $S_{a} U_{h}$ :
$$
\left(S_{a} U_{h} f\right)(r):=f_{\sigma h}(r):=f(\sigma(r+h)) .
$$



















拉格朗日和哈密尔顿动力学|MATH4077 Lagrangian and Hamiltonian Dynamics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4077的成功案例

拉格朗日和哈密尔顿动力学|MATH4077 Lagrangian and Hamiltonian Dynamics代写 Sydney代写


问题 1.

Suppose that the function of time $t \rightarrow q \in S^{2}$ represents a rotational motion of the spherical pendulum. Since $q \in S^{2}$, it follows that the time derivative $\dot{q} \in \mathrm{T}_{q} \mathrm{~S}^{2}$ is a tangent vector of $\mathrm{S}^{2}$ at $q \in \mathrm{S}^{2}$. Thus, $\dot{q}$ is orthogonal to $q$, that is $(\dot{q} \cdot q)=0$. This implies that there is a vector-valued function of time $t \rightarrow \omega \in \mathbb{R}^{3}$ such that
$$
\dot{q}=\omega \times q
$$
or equivalently
$$
\dot{q}=S(\omega) q
$$

证明 .

where
$$
S(\omega)=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \
\omega_{3} & 0 & -\omega_{1} \
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$
is a $3 \times 3$ skew-symmetric matrix function introduced. There is no loss of generality in requiring that $(\omega \cdot q)=0$. This observation is true since $\omega \in \mathbb{R}^{3}$ can be decomposed into the sum of a part in the direction of $q$ and a part that is orthogonal to $q$ and the former part does not contribute to the value of $\dot{q}$.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4077 COURSE NOTES :

Consider the rotational kinematics of a rigid body given by
$$
\dot{R}=R S(\omega),
$$
where $R \in \mathrm{SO}(3), \omega \in \mathbb{R}^{3}$ and
$$
S(\omega)=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \
\omega_{3} & 0 & -\omega_{1} \
-\omega_{2} & \omega_{1} & 0
\end{array}\right] .
$$
Suppose that the angular velocity vector is given in terms of the configuration by
$$
\omega=\sum_{i=1}^{3} e_{i} \times R^{T} e_{i}
$$
where $e_{1}, e_{2}, e_{3}$ denote the standard unit basis vectors in $\mathbb{R}^{3}$. This defines a closed loop kinematics system.



















计算数学|MATH4076 Computational Mathematics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4076的成功案例

计算数学|MATH4076 Computational Mathematics代写 Sydney代写


问题 1.

Match $f(x)=\sqrt{x}$ at $x_{0}=1$ by a quadratic polynomial, i.e., find constants $a_{0}, a_{1}, a_{2}$ such that
$$
p_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2} \approx f(x)
$$
for values of $x$ near $x_{0}=1$

证明 .

We will determine the coefficients $a_{0}, a_{1}, a_{2}$ by matching derivatives of $f$ at $x_{0}=1$, i.e., we will enforce ( 3 conditions for 3 coefficients)
$$
\begin{aligned}
&p_{2}(1)=f(1)=1 \
&p_{2}^{\prime}(1)=f^{\prime}(1)=\frac{1}{2} \
&p_{2}^{\prime \prime}(1)=f^{\prime \prime}(1)=-\frac{1}{4}
\end{aligned}
$$
since we know $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{\prime \prime}(x)=-\frac{1}{4 x^{3 / 2}}$.





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4076 COURSE NOTES :

Since our assumption implies
$$
\begin{aligned}
&p_{2}^{\prime}(x)=a_{1}+2 a_{2} x, \
&p_{2}^{\prime \prime}(x)=2 a_{2}
\end{aligned}
$$
we obtain a system of three linear equations in the three unknowns $a_{0}, a_{1}$ and $a_{2}$ :
$p_{2}(1)=a_{0}+a_{1}+a_{2}=1$
$p_{2}^{\prime}(1)=a_{1}+2 a_{2}=\frac{1}{2}$
$p_{2}^{\prime \prime}(1)=\quad 2 a_{2}=-\frac{1}{4} .$
Solving this triangular system we get $a_{2}=-\frac{1}{8}, a_{1}=\frac{3}{4}$, and $a_{0}=\frac{3}{8}$ so that
$$
p_{2}(x)=\frac{3}{8}+\frac{3}{4} x-\frac{1}{8} x^{2}
$$



















流体动力学|MATH4074 Fluid Dynamics代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4074的成功案例

流体动力学|MATH4074 Fluid Dynamics代写 Sydney代写


问题 1.

$$
\frac{d}{d t}\left(\int_{\mathrm{CV}} \rho d V\right)-\rho_{1} A_{1} V_{1}-\rho_{2} A_{2} V_{2}=0
$$
Now if $A_{t}$ is the tank cross-sectional area, the unsteady term can be evaluated as follows:
$$
\frac{d}{d t}\left(\int_{\mathrm{CV}} \rho d V\right)=\frac{d}{d t}\left(\rho_{\mathrm{w}} A_{t} h\right)+\frac{d}{d t}\left[\rho_{a} A_{r}(H-h)\right]=\rho_{w} A_{t} \frac{d h}{d t}
$$

证明 .

The $\rho_{a}$ term vanishes because it is the rate of change of air mass and is zero because the air is trapped at the top. Substituting we find the change of water height
$$
\frac{d h}{d t}=\frac{\rho_{1} A_{1} V_{1}+\rho_{2} A_{2} V_{2}}{\rho_{w} A_{t}}
$$
Ans. (a)
For water, $\rho_{1}=\rho_{2}=\rho_{\mathrm{w}}$, and this result reduces to
$$
\frac{d h}{d t}=\frac{A_{1} V_{1}+A_{2} V_{2}}{A_{t}}=\frac{Q_{1}+Q_{2}}{A_{t}}
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4074 COURSE NOTES :

applies with one inlet and exit:
$$
\sum \mathbf{F}=m_{2} \mathbf{V}{2}-\dot{m}{1} \mathbf{V}{1}=\left(\rho{2} A_{2} V_{2}\right) \mathbf{V}{2}-\left(\rho{1} A_{1} V_{1}\right) \mathbf{V}{1} $$ The volume integral term vanishes for steady flow, but from conservation of mass in Example $3.3$ we saw that $$ \dot{m}{1}=\dot{m}{2}=\dot{m}=\text { const } $$ Therefore a simple form for the desired result is $$ \sum \mathbf{F}=m\left(\mathbf{V}{2}-\mathbf{V}_{1}\right)
$$
Ans.
This is a vector relation and is sketched.The term $\Sigma$ F represents the net force acting on the control volume due to all causes; it is needed to balance the change in momentum of the fluid as it tums and decelerates while passing through the control volume.



















测量理论和傅里叶分析|MATH4069 Measure Theory and Fourier Analysis代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4069的成功案例

测量理论和傅里叶分析|MATH4069 Measure Theory and Fourier Analysis代写 Sydney代写


问题 1.

By expanding $\left(t^{2}+4 \pi n^{2}\right)^{-1}$ and interchanging sums (justifying this, if you can, just interchanging, if not) deduce that
$$
2\left(1-e^{-t}\right)^{-1}=1+2 t^{-1}+\sum_{m=0}^{\infty} c_{m} t^{m}
$$
where $c_{2 m}=0$ and
$$
c_{2 m+1}=a_{2 m+1} \sum_{n=1}^{\infty} n^{-2 m}
$$
for some value of $a_{2 m+1}$ to be given explicitly.

证明 .

Show that the nth Fourier sum of $F$
$$
S_{n}(F, t)=\sum_{r=-n}^{n} \hat{F}(r) \exp (i r t)=2 \sum_{r=1}^{n} \frac{1}{r} \sin r t
$$
Explain why
$$
S_{n}(F, \tau / n)=2 \frac{\pi}{n} \sum_{r=1}^{n} \frac{1}{\frac{\pi}{n}} \sin \frac{r \pi}{n} \rightarrow \int_{0}^{\tau} \frac{\sin x}{x} d x
$$
as $n \rightarrow \infty$.
Sketch the behaviour of the function
$$
G(\tau)=\int_{0}^{\pi} \frac{\sin x}{x} d x
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4069 COURSE NOTES :

(i) If $\varepsilon>0$, show that
$$
\int_{-\infty}^{\infty} \frac{\sin \lambda x}{x} d x \rightarrow \int_{-\infty}^{\infty} \frac{\sin x}{x} d x
$$
as $\lambda \rightarrow \infty$.
(ii) If $\pi \geq \epsilon>0$, show, by using the estimates from the alternating senies test, or otherwise, that
$$
\int_{-e}^{e} \frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{\sin \frac{x}{2}} d x \rightarrow \int_{-\pi}^{\pi} \frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{\sin \frac{x}{2}} d x=2 \pi
$$
as $n \rightarrow \infty$.
(iii) Show that
$$
\left|\frac{2}{x}-\frac{1}{\sin \frac{1}{2} x}\right| \rightarrow 0
$$
as $x \rightarrow 0$. and dedoce that
$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$



















微分几何学|MATH4068 Differential Geometry代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4068的成功案例

微分几何学|MATH4068 Differential Geometry代写 Sydney代写


问题 1.

$$
\operatorname{det} \Pi\left(t, t_{0}\right)=1
$$
and hence the characteristic equation for the monodromy matrix
$$
M\left(t_{0}\right)=\left(\begin{array}{cc}
c\left(t_{0}+T, t_{0}\right) & s\left(t_{0}+T, t_{0}\right) \
\dot{c}\left(t_{0}+T, t_{0}\right) & \dot{s}\left(t_{0}+T, t_{0}\right)
\end{array}\right),
$$
is given by
$$
\rho^{2}-2 \Delta \rho+1=0
$$
where
$$
\Delta=\frac{\operatorname{tr}\left(M\left(t_{0}\right)\right)}{2}=\frac{c\left(t_{0}+T, t_{0}\right)+\dot{s}\left(t_{0}+T, t_{0}\right)}{2} .
$$

证明 .

If $\Delta^{2}>1$ we have two different real eigenvalues
$$
\rho_{\pm}=\Delta \pm \sqrt{\Delta^{2}-1}=\sigma \mathrm{e}^{\pm T \gamma}
$$
with corresponding eigenvectors
$$
u_{\pm}\left(t_{0}\right)=\left(\begin{array}{c}
1 \
m_{\pm}\left(t_{0}\right)
\end{array}\right)
$$
where
$$
m_{\pm}\left(t_{0}\right)=\frac{\rho_{\pm}-c\left(t_{0}+T, t_{0}\right)}{s\left(t_{0}+T, t_{0}\right)}=\frac{\dot{s}\left(t_{0}+T, t_{0}\right)}{\rho_{\pm}-\dot{c}\left(t_{0}+T, t_{0}\right)}
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4068 COURSE NOTES :

$u_{1}, \ldots, u_{m}$ is a basis for $V_{1}$ and $u_{m+1}, \ldots, u_{n}$ is a basis for $V_{2}$, implies that $A$ is transformed to the block form
$$
U^{-1} A U=\left(\begin{array}{cc}
A_{1} & 0 \
0 & A_{2}
\end{array}\right)
$$
in these new coordinates. Moreover, we even have
$$
U^{-1} \exp (A) U=\exp \left(U^{-1} A U\right)=\left(\begin{array}{cc}
\exp \left(A_{1}\right) & 0 \
0 & \exp \left(A_{2}\right)
\end{array}\right)
$$
Hence we need to find some invariant subspaces which reduce $A$. If we look at one-dimensional subspaces we must have
$$
A x=\alpha x, \quad x \neq 0
$$



















动力系统和应用|MATH4063 Dynamical Systems and Applications代写 Sydney代写

0

这是一份Sydney悉尼大学MATH4063的成功案例

动力系统和应用|MATH4063 Dynamical Systems and Applications代写 Sydney代写


问题 1.

Kirchhoff’s laws yield $I_{R}=I_{L}=I_{C}$ and $V_{R}+V_{L}+V_{C}=V$. Using the properties of our three elements we arrive at the second-order linear differential equation
$$
L \vec{I}(t)+R \dot{I}(t)+\frac{1}{C} I(t)=\dot{V}(t)
$$
for the current $I$. Let us try to solve this equation for an external sinusoidal voltage
$$
V(t)=V_{0} \cos (\omega t)
$$
It turns out convenient to use the complex voltage $V(t)=V_{0} \mathrm{e}^{\mathrm{i} u t}$ :
$$
\vec{I}+\frac{R}{L} \dot{I}+\frac{1}{L C} I=i \frac{\omega V_{0}}{L} \mathrm{e}^{\mathrm{i} t} \text {. }
$$
We get the solutions for $V(t)=V_{0} \cos (\omega t)$ and $V(t)=V_{0} \sin (\omega t)$ by taking real and imaginary part of the complex solution, respectively.

证明 .

The eigenvalues are
$$
\alpha_{1,2}=-\eta \pm \sqrt{\eta^{2}-\omega_{0}^{2}}
$$
where we have introduced the convenient abbreviations
$$
\eta=\frac{R}{2 L} \quad \text { and } \quad \omega_{0}=\frac{1}{\sqrt{L C}} .
$$
If $\eta>\omega_{0}$ (over damping), both eigenvalues are negative and the solution of the homogenous equation is given by
$$
I_{h}(t)=k_{1} e^{\alpha_{1} t}+k_{2} e^{\alpha_{2} t} \text {. }
$$
If $\eta=\omega_{0}$ (critical damping), both eigenvalues are equal and the solution of the homogenous equation is given by
$$
I_{h}(t)=\left(k_{1}+k_{2} t\right) \mathrm{e}^{-i t}
$$
Finally, for $\eta<\omega_{0}$ (under damping) we have complex conjugate eigenvalues and the solution of the homogenous equation is given by $$ I_{h}(t)=k_{1} \mathrm{e}^{-\eta t} \cos (\beta t)+k_{2} \mathrm{e}^{-\eta t} \sin (\beta t), \quad \beta=\sqrt{\omega_{0}^{2}-\eta^{2}}>0
$$





英国论文代写Viking Essay为您提供作业代写代考服务

MATH4063 COURSE NOTES :



Look at the second-order equation
$$
\vec{x}+c_{1} \dot{x}+c_{0} x=g
$$
and let $\alpha_{1}, \alpha_{2}$ be the corresponding eigenvalues (not necessarily distinet). Show that the equation an be factorized as
$$
\vec{x}+c_{1} \dot{x}+c_{0} x=\left(\frac{d}{d t}-\alpha_{2}\right)\left(\frac{d}{d t}-\alpha_{1}\right) x .
$$
Hence the equation can be reducel to solving two first order equations
$$
\left(\frac{d}{d t}-\alpha_{2}\right) y=g, \quad\left(\frac{d}{d t}-\alpha_{1}\right) x=y .
$$
Use this to prove in the case $n=2$. What can you say about the structure of the solution if $g(t)=p(t) e^{\beta t}$, where $p(t)$ is a polynomial. Can you also do the general case $n \in \mathbb{N}$ ? (Hint: The solution for the first order case is given Moreover, $\int p(t) \mathrm{e}^{3 t} d t=q(t) \mathrm{e}^{3 t}$, where $q(t)$ is a polynomial of degree $\operatorname{deg}(q)=\operatorname{deg}(p)$ if $\beta \neq 0$ and $\operatorname{deg}(q)=\operatorname{deg}(p)+1$ if $\beta=0$. For the general case use induction.)